Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_1-38 (1).doc
Скачиваний:
7
Добавлен:
17.04.2019
Размер:
324.61 Кб
Скачать

31. Системный анализ: принципы, ограничения, модели

Системный анализ — научный метод познания, представляющий собой последовательность действий по установлению структурных связей между переменными или элементами исследуемой системы. Опирается на комплекс общенаучных, экспериментальных, естественнонаучных, статистических, математических методов.

Ограничения системного анализа:

Одной из важнейших характеристик любой методологии являются границы ее оптимального использования. Это в полной мере справедливо и по отношению к таким мощным методологиям, какой является системный анализ. Понимание возможностей системного анализа столь же необходимо, как и понимание его ограничений.

Границы любого метода определяются номенклатурой решаемых с его помощью типов задач, обоснованием области его предпочтительного применения, реализуемыми функциями и используемым методическим арсеналом. Выше отмечалось, что область применения системного анализа чрезвычайно широка. Правильность и полнота номенклатуры реализуемых на его основе частных функций, а также их содержания, полнота и правильность структуры соответствующих подпроцессов решения проблемы могут быть определены путем исследования адекватности номенклатуры и содержания применяемых в системном анализе понятий, а также в результате изучения практики применения системного анализа. Можно ожидать, что определенные уточнения будут производиться, однако увеличение масштаба нормативной теории пока еще рассматривается как нежелательное.

Что касается совершенства методов, используемых для реализации частных функций, то, не вдаваясь в детальный анализ этого вопроса, можно сказать, что системный анализ, несмотря на его внушительные успехи, должен претерпеть еще значительное развитие или что он находится еще в начале своего пути.

Ряд частных функций системного анализа еще не имеет адекватного инструмента. К ним относятся: диагностика существующего состояния системы, в особенности диагностика организаций; определение дефектных элементов существующей системы; методы определения номенклатуры альтернатив; методы определения тактики и стратегии решения проблемы; идентификация человеческих характеристик для решения проблем; конструирование и реализация организаций с заданным типом поведения; оценка последствий решения проблемы. Во многих из этих областей ведутся интенсивные работы, в особенности в области организации и руководства.

Особую, так же слабо разработанную область образуют методы выбора методов для реализации частных функций решения проблем.

Чем больше масштаб и сложность проблем, тем более четко проявляются существующие ограничения системной методологии их решения. Устранение этих ограничений требует разработки ряда новых дисциплин и значительного развития многих существующих. Должна быть разработана, в частности, теория относительно обособленных целостностей (систем), их возникновения, роста и развития, нормы и патологии, качественных преобразований и деградации. Потребуется теория системной среды, в том числе теория иерархически организованной системной среды, и многие другие.

Поскольку структура системной методологии достаточно сложна и имеет тенденцию дальнейшего усложнения, ее адекватность реальности может быть установлена, как и всегда в подобных случаях, только на основе соотнесения получаемых результатов реальности. Для определенного круга задач в качестве перспективного может рассматриваться направление, основанное на корректном использовании более или менее сильных формализаций. В целом оценка эффективности конкретных форм системной методологии представляет собой серьезную проблему.

Системный анализ основывается на неукоснительном соблюдении следующих принципов:

• процесс принятия решения должен начинаться с обоснования и четкой формулировки конечных целей;

• любая проблема должна быть представлена как целостная единая система с указанием взаимосвязей и последствий каждого частного решения;

• решение проблемы должно быть представлено совокупностью возможных альтернативных путей достижения цели;

• цели отдельных подразделений не должны противоречить целям всей системы в целом.

Еще Принципы системного анализа по этой книге, только подробнее:

Первый принцип: явление или процесс могут быть изучены только тогда, когда они рассматриваются в виде некоторой системы или ее части. Этот принцип означает необходимость рассмотрения изучаемого явления в терминах элементов системы и среды. Стратегическая задача должна заключаться в том, чтобы определить, какие элементы обеспечивают функционирование изучаемого явления, какие связи они образуют между собой, в каких условиях функционирует и развивается явление. Отдельно взятый факт не доступен для полноценного исследования.

Второй принцип – это требование рассматривать структуру любой системы в виде целостной совокупности ее элементов, нацеленность на поиск конкретных механизмов целостности, выявление достаточно полной типологии связей. В более жесткой интерпретации этот принцип понимается как запрет на рассмотрение системы как простого объединения элементов и заключается в признании того, что свойства системы не просто сумма свойств ее элементов, а нечто большее, проявляющееся в феномене целостности, интегративности. Тем самым постулируется возможность того, что система обладает особыми свойствами, которых может и не быть у составляющих ее элементов. Этот принцип основывается на том положении, что никаких свойств целостности, не являющихся свойствами образующих ее элементов или их функций, не существует, хотя целое не есть простая сумма всех элементов.

Этот принцип утверждает возможность вывода всех свойств системы из свойств ее элементов и их взаимодействий. Иначе он может быть назван принципом относительного редукционизма. Он отражает диалектику общего, особенного и единичного в каждом элементе системы. Полный набор единичных свойств, качеств, признаков и взаимосвязей делает каждый элемент системы неповторимым. Наличие особенного позволяет типологизировать совокупность элементов, т. е. объединять их в соответствующие группы, внутри которых это особенное относительно сходно, а от группы к группе – образует континуум. Познание общего выводит на закономерности функционирования и развития системы.

Весьма важным атрибутом системы является ее эффективность. Теоретически доказано, что у любой системы всегда существует функция ее ценности в виде зависимости ее эффективности (в экономических системах это стоимостные показатели в денежном или натуральном выражении) от условий и форм ее реализации и функционирования. Кроме того, эта функция ограничена, а значит, можно и нужно искать ее максимум. В необходимости определения максимума эффективности системы заключается третий принцип системного анализа.

Смысл четвертого принципа состоит в обязательном требовании рассматривать любую систему не как самодостаточную, автономную, обособленную и т. д., а в тесном взаимодействии с окружающей ее средой. Это означает обязательность рассмотрения любой системы как открытой для восприятия внешних связей или, в более общем виде, требование рассматривать анализируемую систему как часть (подсистему) некоторой более общей системы.

Перечисленные принципы предопределяют содержание пятого принципа системного анализа – возможности (а иногда и необходимости) деления данной системы на части – подсистемы. Если последние оказываются недостаточно просты для анализа, с ними поступают точно так же. Но в процессе такого деления нельзя нарушать предыдущие принципы: пока они соблюдены, деление оправдано, разрешено в том смысле, что гарантирует применимость практических методов, приемов, алгоритмов решения задач системного анализа.

Шестой принцип: система является относительно устойчивой, гомеостатической тогда, когда она функционирует на основе обмена (информационного, энергетического, ресурсного и т. д.) между управляющей и управляемой подсистемами. Наличие обратной связи – обязательное условие гомеостатического функционирования.

Седьмой принцип: управление (познание) сложной системой не будет эффективным, если управляющая (познающая) система имеет недостаточную собственную сложность. Это частный вывод из закона необходимого разнообразия.

Модели системного анализа:

Классификация моделей

Абстрактные модели являются идеальными конструкциями, построенными средствами мышления, сознания. Очевидно, что к абстрактным моделям относятся языковые конструкции; однако современные представления о мышлении и сознании утверждают, что языковые модели (т.е. модели, построенные средствами естественного языка) являются своего рода конечной продукцией мышления, уже готовой или почти готовой для передачи другим носителям языка. Материальные модели:  Модели подобия. Прежде всего, это подобие, устанавливаемое в результате физическая во взаимодействия (или цепочки физических взаимодействий) в процессе создания модели. Примерами таких отображений являются фотографии, масштабированные модели самолетов, кораблей или гидротехнических сооружений, макеты зданий, куклы, протезы, шаблоны, выкройки и т.п. Назовем такое подобие прямым

Косвенное подобие  Второй тип подобия в отличие от прямого назовем косвенным. Косвенное подобие между оригиналом и моделью устанавливается не в результате их физического взаимодействия, а объективно существует в природе, обнаруживается в виде совпадения или достаточной близости их абстрактных моделей и после этого используется в практике реального моделирования. Наиболее известным примером этого является электромеханическая аналогия. Оказалось, что некоторые закономерности электрических и механических процессов описываются одинаковыми уравнениями; различие состоит лишь в разной физической интерпретации переменных, входящих в эти уравнения. Условное подобие  Третий, особый класс реальных моделей образуют модели, подобие которых оригиналу не является ни прямым, ни косвенным, а устанавливается в результате соглашения. Назовем такое подобие условным. Примерами условного подобия служат деньги (модель стоимости), удостоверения личности (официальная модель владельца), всевозможные и разнообразные сигналы (модели сообщений), рабочие чертежи (модели будущей продукции), карты (модели местности) и т.д.

 

 

Познавательные и прагматические модели

Разделим модели на познавательные и прагматические, что соответствует делению целей на теоретические и практические Познавательные модели являются формой организации и представления знаний, средством соединения новых знаний с имеющимися. Поэтому при обнаружении расхождения между моделью и реальностью встает задача устранения этого расхождения с помощью изменения модели. Познавательная деятельность ориентирована в основном на приближение модели к реальности, которую модель отображает Прагматические модели являются средством управления, средством организации практических действий, способом представления образцово правильных действий или их результата, т.е. являются рабочим представлением целей. Поэтому использование прагматических моделей состоит в том, чтобы при обнаружении расхождений между моделью и реальностью направить усилия на изменение реальности так, чтобы приблизить реальность к модели. Таким образом, прагматические модели носят нормативный характер, играют роль стандарта, образца, под которые "подгоняются" как сама деятельность, так и ее результат. Другими словами, основное различие между познавательными и прагматическими моделями можно выразить так: познавательные модели отражают существующее, а прагматические — не существующее, но желаемое и (возможно) осуществимое.

 

Модель черного ящика

Важную для человека роль играют наглядные, образные, визуальные модели. Перейдем от первого определения системы к его визуальному эквиваленту. Во-первых, приведенное определение ничего не говорит о внутреннем устройстве системы. Поэтому ее можно изобразить в виде непрозрачного "ящика", выделенного из окружающей среды. Подчеркнем, что уже эта, максимально простая, модель по-своему отражает два следующих важных свойства системы:целостность и обособленность от среды. Во-вторых, в определении системы косвенно говорится о том, что хотя "ящик" и обособлен, выделен из среды, но не является полностью от нее изолированным.  В самом деле, ведь достигнутая цель - это запланированные заранее изменения в окружающей среде, какие-то продукты работы системы, предназначенные для потребления вне ее. Иначе говоря, система связана со средой и с помощью этих связей воздействует на среду. Изобразим связи в виде стрелок, направленных от системы в среду. Эти связи называются выходами системы. Подчеркнем еще раз, что выходы системы в данной графической модели соответствуют слову "цель" в словесной модели (первом определении) системы.  Кроме того, в определении имеется указание и на наличие связей другого типа: система является средством, поэтому должны существовать и возможности ее использования, воздействия на нее, т.е. и такие связи со средой, которые направлены извне в систему. Изобразим эти связи также в виде соответствующих стрелок, направленных от среды в систему, и назовем их входами системыГлавной причиной множественности входов и выходов в модель "черного ящика" является то, что всякая реальная система, как и любой объект, взаимодействует с объектами окружающей среды неограниченным числом способов.

Модель состава системы

При рассмотрении любой системы прежде всего обнаруживается то, что ее целостность и обособленность (отображенные в модели черного ящика) выступают как внешние свойства. Внутренность же "ящика" оказывается неоднородной, что позволяет различать составные части самой системы. При более детальном рассмотрении некоторые части системы могут быть, в свою очередь, разбиты на составные части и т.д. Те части системы, которые мы рассматриваем как неделимые, будем называть элементами. Части системы, состоящие более чем из одного элемента, назовем подсистемами. СЛОЖНОСТИ ПОСТРОЕНИЯ МОДЕЛИ СОСТАВА Во-первых, разные модели состава получаются вследствие того, что понятие элементарности можно определить по-разному. То, что с одной точки зрения является элементом, с другой - оказывается подсистемой, подлежащей дальнейшему разделению. Во-вторых, как и любые модели, модель состава является целевой, и для различных целей один и тот же объект потребуется разбить на разные части. Например, один и тот же завод для директора, главного бухгалтера, начальника пожарной охраны состоит из совершенно различных подсистем. Точно так же модели состава самолета с точек зрения летчика, стюардессы, пассажира и аэродромного диспетчера окажутся различными. То, что для одного обязательно войдет в модель, может совершенно не интересовать другого.  В-третьих, модели состава различаются потому, что всякое разделение целого на части, всякое деление системы на подсистемы является относительным, в определенной степени условным. Например, тормозную систему автомобиля можно отнести либо к ходовой части, либо к подсистеме управления. Другими словами, границы между подсистемами условны, относительны, модельны.  Модель состава системы отображает, из каких частей (подсистем и элементов) состоит система. Главная трудность в построении модели состава заключается в том, что разделение целостной системы на части является относительным, условным, зависящим от целей моделирования (это относится не только к границам между частями системы, но и к границам самой системы). Кроме того, относительным является и определение самой малой части - элемента. Модель структуры системы отображает связи между компонентами модели ее состава, т.е. совокупность связанных между собой моделей "черного ящика" для каждой из частей системы.

Модель структуры системы

Совокупность необходимых и достаточных для достижения цели отношений между элементами называется структурой системы. Перечень связей между элементами (т.е. структура системы) является отвлеченной, абстрактной моделью: установлены только отношения между элементами, но не рассмотрены сами элементы. Хотя на практике безотносительно к элементам говорить о связях можно лишь после того, как отдельно рассмотрены сами элементы (т.е. рассмотрена модель состава), теоретически модель структуры можно изучать отдельно.  Бесконечность природы проявляется и в том, что между реальными объектами, вовлеченными в систему, имеется невообразимое (может быть, бесчисленное) количество отношений. Однако когда мы рассматриваем некоторую совокупность объектов как систему, то из всех отношений важными, т.е. существенными для достижения цели, являются лишь некоторые. Точнее, в модель структуры (т.е. в список отношений) мы включаем только конечное число связей, которые, по нашему мнению, существенны по отношению к рассматриваемой цели.  Рассмотрим связь между понятиями "отношение" и "свойство". В отношении участвует не менее двух объектов, а свойством мы называем некий атрибут одного объекта. Это различие отражается и при их математическом описании. Во-первых, любое свойство, даже если его понимать как потенциальную способность обладать определенным качеством, выявляется в процессе взаимодействия объекта (носителя свойства) с другими объектами, т.е. в результате установления некоторого отношения. Чтобы убедиться в том, что мяч красный, мало иметь мяч, нужны еще источник белого света и анализатор света, отраженного от мяча (еще и не всякий анализатор пригоден; например, глаз дальтоника не может установить цвет мяча). Во-вторых, можно сделать дальнейшее обобщение и выдвинуть следующее предположение: свойство - это не атрибут объекта, а лишь определенная абстракция отношения, экономящая мышление. Мы "коротко и ясно" говорим, что стекло прозрачно, вместо того чтобы каждый раз говорить об отношении между лучом света, падающим на поверхность стекла, самим листом стекла и приемником света, находящимся по другую сторону этого листа. Другими словами, можно утверждать, что свойство - это свернутое отношение (а если использовать понятие модели так, как это предложено в гл. 2, то свойство есть модель отношения).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]