Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТРЕХФАЗНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ.docx
Скачиваний:
32
Добавлен:
26.11.2019
Размер:
995.19 Кб
Скачать

[Править]Ковариантная формулировка

С современной точки зрения, четырехмерная ковариантная формулировка электродинамики, и в частности - запись уравнений Максвелла в таком виде, является физически наиболее фундаментальной.

Практически она приводит, кроме явной ковариантности, к значительно большей компактности уравнений, а значит определенной красоте и в ряде случаев удобству, и более органично и прямо включает в себя единство электромагнитного поля.

Под ковариантной формулировкой понимают два различающихся, но прямо и непосредственно связанных варианта: лоренц-ковариантная формулировка в плоском пространстве-времениМинковского и общековариантная формулировка для общего случая искривленного пространства-времени (стандартно рассматриваемая в контексте общей теории относительности). Второй вариант отличается от первого тем, что метрика пространства-времени в нем не постоянна (что может означать как присутствие гравитации, так и просто использование более широкого класса координат, например, соответствующих неинерциальным системам отсчета), и во многом сводится к замене обычных производных по (четырехмерным) координатам на ковариантные производные (в значительной части случаев это сводится к механической замене первых на вторые). Кроме прочего, второй вариант позволяет исследовать взаимодействие электромагнитного поля с гравитацией.

  • Ниже сначала рассмотрен (как более простой) первый вариант - вариант лоренц-ковариантной формулировки в плоском пространстве-времени.

[Править]Четырёхмерные векторы

При ковариантной записи уравнений электродинамики производится переход от трёхмерных векторов и скаляров к четырёхмерным векторам (4-векторы). Независимо от системы единиц, четырехмерные координаты (4-вектор координат, в компоненты которого входят время и трехмерные пространственные координаты), производная по этим координатам (4-производная) и плотность тока определяются следующим образом[52]:

Индекс 4-вектора принимает значения  . В компонентной записи вектора сначала идёт нулевая компонента, затем — пространственные. Например, время равно  , а плотность заряда  . В силу этих определений, закон сохранения заряда в ковариантной форме принимает следующий вид:

По повторяющемуся индексу предполагается суммирование от 0 до 3 (правило Эйнштейна).

Пример  [показать]

Введём 4-вектор потенциала, имеющий в системах СГС и СИ следующие компоненты:

СГС

СИ

При ковариантной записи играет роль положение индекса у 4-вектора. Если индекс находится внизу, то такой вектор называется ковариантным вектором (или ковектором), и его пространственные компоненты имеют обратный знак по сравнению с компонентами 4-вектора. Поднятие и опускание индексов проводится при помощи метрического тензора  , который в четырёхмерном пространстве Минковского имеет диагональный вид с сигнатурой:  .

При помощи такого определения 4-вектора потенциала, калибровочное условие Лоренца в ковариантной форме можно записать следующим образом:

Если это условие выполняется, то уравнения Максвелла для потенциалов в вакууме при наличии зарядов и токов принимают вид:

СГС

СИ

,

где   — оператор Даламбера с обратным знаком:

Нулевая компонента уравнений Максвелла для 4-вектора потенциала соответствует уравнению для , а пространственная — для  .