Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на билеты ТИПИС 3 семестр.docx
Скачиваний:
32
Добавлен:
19.01.2023
Размер:
740.17 Кб
Скачать

27. Топологический, логико-математический, теоретико-информационный подходы к описанию систем.

Топологический уровень. Связи между элементами множеств определяются с помощью некоторых топологических структур (деревья, графы, схемы). Логико-математический уровень Применяется для описания систем, реализованных с помощью элементов вычислительной техники (автоматы, микросхемы). Функционирование таких устройств происходит на основе функций, задаваемых с помощью логических операций «И», «ИЛИ», «НЕ» и т.д. Теоретико-информационный уровень. Используется для описания информационных процессов, в рамках которых информация передаются от одного объекта к другому.

28. Кибернетический и эвристический подход к описанию систем.

Кибернетический подход абстрактного описания систем связан с представлением системы как некоторого объекта, куда в определенные моменты времени можно вводить вещество, энергию и информацию, а в другие моменты времени - выводить их. Система представляется как объект управления, двигающийся к определенной цели. Эвристический подход абстрактного описания систем предусматривает поиски удовлетворительного решения задач управления в связи с наличием в сложной системе человека. Эвристика - это догадка, основанная на общем опыте решения родственных задач. Изучение интеллектуальной деятельности человека в процессе управления имеет очень большое значение. Моделируется человеческое мышление, интуиция.

29. Теоретико-множественный подход к описанию систем. Функциональные и временные модели.

Для получения математической модели процесса функционирования системы, чтобы она охватывала широкий класс реальных объектов, в общей теории систем исходят из общих предположений о характере функционирования системы:

1. система функционирует во времени; в каждый момент времени система может находиться в одном из возможных состояний;

2. на вход системы могут поступать входные сигналы;

3. система способна выдавать выходные сигналы;

4. состояние системы в данный момент времени определяется предыдущими состояниями и входными сигналами, поступившими в данный момент времени и ранее;

5. выходной сигнал в данный момент времени определяется состояниями системы, относящимися к данному и предшествующим моментам времени.

30. Кибернетический подход к процессу управления.

Кибернетический подход абстрактного описания систем связан с представлением системы как некоторого объекта, куда в определенные моменты времени можно вводить вещество, энергию и информацию, а в другие моменты времени - выводить их. Система представляется как объект управления, двигающийся к определенной цели.

31. Структурная схема системы управления.

Устройства связи и управления существенно отличаются от обычных технических устройств, тем что энергетические отношения в них не играют существенной роли, а основное внимание обращается на способность передавать и перерабатывать без искажений большое количество информации. Так в линии радиосвязи ничтожная доля энергии излучаемой антенной передатчика получатся антенной радиоприемника. КПД такого устройства, с точки зрения передачи энергии чрезвычайно мало, однако цель - передача информации выполняется.

32. Агрегативное описание систем.

Агрегат - унифицированная схема, получаемая наложением дополнительных ограничений на множества состояний, сигналов и сообщений и на операторы перехода а так же выходов.

t Î T - моменты времени; x Î X - входные сигналы; u Î U - управляющие сигналы; y Î Y - выходные сигналы; z Î Z - состояния, x(t), u(t), y(t), z(t) - функции времени.

Агрегат - объект определенный множествами T, X, U, Y, Z и операторами H и G реализующими функции z(t) и y(t). Структура операторов H и G является определяющей для понятия агрегата.

Вводится пространство параметров агрегата b=(b1, b2, ...,bn) Î B.

Оператор выходов G реализуется как совокупность операторов G` и G``. Оператор G` выбирает очередные моменты выдачи выходных сигналов, а оператор G`` - содержание сигналов.

у=G``{t, z(t),u(t),b}.

В общем случае оператор G`` является случайным оператором, т.е. t, z(t), u(t) и b ставится в соответствие множество y с функцией распределения G``. Оператор G` определяет момент выдачи следующего выходного сигнала.

Операторы переходов агрегата. Рассмотрим состояние агрегата z(t) и z(t+0).

Оператор V реализуется в моменты времени tn , поступления в агрегат сигналов xn(t). Оператор V1 описывает изменение состояний агрегата между моментами поступления сигналов.

z(t’n + 0) = V{ t’n, z(t’n), x(t’n), b}.

z(t) = V1(t, tn, z(t+0),b}.

Особенность описания некоторых реальных систем приводит к так называемым агрегатам с обрывающимся процессом функционирования. Для этих агрегатов характерно наличие переменной соответствующий времени оставшемуся до прекращения функционирования агрегата.

Все процессы функционирования реальных сложных систем по существу носят случайный характер, поэтому в моменты поступления входных сигналов происходит регенерация случайного процесса. То есть развитие процессов в таких системах после поступления входных сигналов не зависит от предыстории.

Автономный агрегат - агрегат который не может воспринимать входных и управляющих сигналов.

Неавтономный агрегат - общий случай.

Частные случаи агрегата:

– Кусочно-марковский агрегат - агрегат процессы в котором являются обрывающими марковскими процессами. Любой агрегат можно свести к марковскому.

– Кусочно-непрерывный агрегат - в промежутках между подачей сигналов функционирует как автономный агрегат.

– Кусочно-линейный агрегат. dzv(t)/dt = F(v)(zv).

Представление реальных систем в виде агрегатов неоднозначно, вследствие неоднозначности выбора фазовых переменных.

Иерархический принцип построения модели как одно из определений структурной сложности. Иерархический и составной характер построения системы.

Вертикальная соподчиняемость.

Право вмешательства. Обязательность действий вышестоящих подсистем.

Страты - уровни описания или абстрагирования. Система представляется комплексом моделей - технологические, информационные и т.п. со своими наборами переменных.

Слои - уровни сложности принимаемого решения:

1) срочное решение;

2) неопределенность или неоднозначность выбора.

Разбиение сложной проблемы на более простые: слой выбора способа действия, слой адаптации, слой самоорганизации.

Многоэшелонные системы. Состоит из четко выраженных подсистем, некоторые из них являются принимающими решения иерархия подсистем и принятия решений.

Декомпозиция на подсистемы - функционально-целевой принцип, декомпозиция по принципу сильных связей