Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПОСОБИЕ для студ МБФ. doc.docx
Скачиваний:
113
Добавлен:
12.02.2015
Размер:
1 Mб
Скачать

Делокализованная π-связь

По методу МВС электронная структура молекулы выглядит как набор различных валентных схем (метод локализованных пар). Но исследования показывают что всегда локализованными являются только σ-связи. При наличии π-связей может иметь место делокализация. Нелокализованная химическая связь ― связующая электронная пара одновременно принадлежит более чем двум атомным ядрам.

В приведенных формулах нитросоединения связи азота с кислородом неравноценны. Однако, как показывают результаты физических исследований, эти связи энергетически совершенно одинаковы. Следовательно, электронная пара, обусловливающая отрицательный заряд, не сосредоточена целиком на каком-либо одном кислородном атоме, а несколько смещена к азоту при одновременном смещении от азота ко второму кислородному атому подвижной π-электронной пары двойной связи. В результате выравнивания электронной плотности в нитрогруппе формальный отрицательный заряд (-1) распределяется поровну (-1/2) между обоими атомами кислорода:

В плоском треугольном ионе NO3-( sp2-гибридизация атома азота) делокализованные π-связи равномерно распределяются между всеми атомами кислорода. Точно также делокализованные π-связи равномерно распределяются между всеми атомами кислорода в анионах BO33-(sp2-гибридизация атома бора→см. рис.5) ,

CO32-(sp2-гибридизация атома углерода→см.рис.5),PO43-(sp3-гибридизация атома фосфора→теираэдр) ,SO42-(sp3-гибридизация атома серы→тетраэдр) ,а в

BF3(sp2-гибридизация атома бора→см.рис5) ― между всеми атомами фтора.

Рис.10 Структурные формулы SO42- и PO43- с учётом делокализации π-связи.

Метод молекулярных орбиталей

Метод ВС широко используется химиками. В рамках этого метода большая и сложная молекула рассматривается как состоящая из отдельных двухцентровых и двухэлектронных связей. Принимается, что электроны, обусловливающие химическую связь, локализованы (расположены) между двумя атомами. К большинству молекул метод ВС может быть применен с успехом. Однако имеется ряд молекул, к которым этот метод неприменим или его выводы находятся в противоречии с опытом.

Установлено, что в ряде случаев определяющую роль в образовании химической связи играют не электронные пары, а отдельные электроны. На возможность химической связи при помощи одного электрона указывает существование иона H2+. При образовании этого иона из атома водорода и иона водорода выделяется энергия в 255 кДж . Таким образом, химическая связь в ионе H­2+ довольно прочная. Если попробовать описать химическую связь в молекуле кислорода по методу ВС, то придем к заключению, что, во-первых, она должна быть двойной (σ- и p-связи), во-вторых, в молекуле кислорода все электроны должны быть спарены, т.е. молекула О2 должна быть диамагнитна (у диамагнитных веществ атомы не обладают постоянным магнитным моментом и вещество выталкивается из магнитного поля). Парамагнитным веществом называется то, атомы которого или молекулы обладают магнитным моментом, и оно обладает свойством втягиваться в магнитное поле. Экспериментальные данные показывают, что по энергии связь в молекуле кислорода действительно двойная, но молекула является не диамагнитной, а парамагнитной. В ней имеется два неспаренных электрона. Метод ВС бессилен объяснить это факт.

Метод молекулярных орбиталей (МО) наиболее нагляден в его графической модели линейной комбинации атомных орбиталей (ЛКАО).

Метод МО ЛКАО основан на следующих правилах:

1.  При сближении атомов до расстояний химических связей из атомных орбиталей (АО) образуются молекулярные.

2. Число полученных молекулярных орбиталей равно числу исходных атомных.

3. Перекрываются атомные орбитали, близкие по энергии. В результате перекрывания двух атомных орбиталей образуются две молекулярные. Одна из них имеет меньшую энергию по сравнению с исходными атомными и называется связывающей, а вторая молекулярная орбиталь обладает большей энергией, чем исходные атомные орбитали, и называется разрыхляющей.

4. При перекрывании атомных орбиталей возможно образование и σ-связи (перекрывание по оси химической связи), и π-связи (перекрывание по обе стороны от оси химической связи).

5. Молекулярная орбиталь, не участвующая в образовании химической связи, носит название несвязывающей. Ее энергия равна энергии исходной АО.

6.На одной молекулярной орбитали (как, впрочем, и атомной) возможно нахождение не более двух электронов.

7.Электроны занимают молекулярную орбиталь с наименьшей энергией (принцип наименьшей энергии).

8.Заполнение вырожденных (с одинаковой энергией) орбиталей происходит последовательно по одному электрону на каждую из них.

Применим метод МО ЛКАО и разберем строение молекулы водорода.

Мысленно перекроем две атомные орбитали, образовав две молекулярные, одна из которых (связывающая) обладает меньшей энергией (расположена ниже), а вторая (разрыхляющая) — большей энергией (расположена выше) (рис.11).

Рис. 11 Энергетическая диаграмма образования молекулы Н2

Метод МО ЛКАО позволяет наглядно объяснить образование ионов Н2+, что вызывает трудности в методе валентных связей. На σ-связывающую молекулярную орбиталь катиона Н2+переходит один электрон атома H с выигрышем энергии. Образуется устойчивое соединение с энергией связи 255кДж/моль. Порядок связи равен ½. Молекулярный ион парамагнитен (рис.12). Молекула обычного водорода содержит уже два электрона с противоположными спинами на σ1s-орбитали: Энергия связи в Н2 больше, чем в H2+- 435 кДж/моль. В молекуле Н2 имеется одинарная связь, молекула диамагнитна.

Рис. 12 Энергетическая диаграмма образования иона Н2+

Используя метод МО ЛКАО, рассмотрим возможность образования молекулы He2

В этом случае два электрона займут связывающую молекулярную орбиталь, а два других — разрыхляющую (рис.13). Выигрыша в энергии такое заселение двух орбиталей электронами не принесет. Следовательно, молекулы He2 не существует.

Рис. 13 Энергетическая диаграмма, иллюстрирующая невозможность образования химической связи между атомами He

Заполнение молекулярных орбиталей происходит при соблюдении принципа Паули и правила Хунда по мере увеличения их энергии в такой последовательности:

σ1s < σ*1s < σ2s < σ*2s < σ2pz < π2px = π2py < π*2px =π*2py < σ*2pz

Значения энергии σ2p и π2p близки и для некоторых молекул(В22,N2) соотношение обратное приведённому: сначала π2p потом σ2p

Таблица 1 Энергия и порядок связи в молекулах элементов 1 периода

Молекулы и молекулярные ионы

Электронная конфигурация

Энергия связи

кДж/моль

Порядок связи

Н2+

s)1

256

0,5

Н2

s)2s*)1

431

1

Н2-

s)2s*)1

-

0,5

НеН

s)2s*)1

-

0,5

Не2+

s)2s*)1

243

0,5

Не2

s)2s*)2

-

0

Согласно методу МО порядок связи в молекуле определяется разностью между числом связывающих и разрыхляющих орбиталей, деленный на два. Порядок связи может быть равен нулю (молекула не существует), целому или дробному положительному числу. При нулевой кратности связи, как в случае Не2,молекула не образуется. Число связывающих и разрыхляющих электронов зависит от их числа в атомах исходных элементов(см. табл.1).

Образование молекул из атомов элементов II периода может быть записано следующим образом (К – внутренние электронные слои):

Li 2 [KK(σs)2]

Be2 [KK(σs)2s*)2] молекула не обнаружена,

как и молекула Не2

B2 [KK(σs)2s*)2 x)1y)1] молекула парамагнитна

C2 [KK(σs)2s*)2x)2y)2]

N2 [KK(σs)2s*)2x)2y)2z)2 ]

O2 [KK(σs)2s*)2z)2x)2y)2x)1y)1 ] молекула парамагнитна

F2 [KK(σs)2s*)2z)2x)2y)2x)2y)2 ]

Ne2 [KK(σs)2s*)2z)2x)2y)2x)2y)2z*)2 ] молекула не обнаружена

Методом МО ЛКАО легко продемонстрировать парамагнитные свойства молекулы кислорода. С тем, чтобы не загромождать рисунок, не будем рассматривать перекрывание 1s-орбиталей атомов кислорода первого (внутреннего) электронного слоя. Учтем, что p-орбитали второго (внешнего) электронного слоя могут перекрываться двумя способами. Одна из них перекроется с аналогичной с образованием σ-связи. Две других p-АО перекроются по обе стороны от оси x с образованием двух π-связей

Рис. 14 Энергетическая диаграмма,иллюстрирующая с помощью метода МО ЛКАО парамагнитные свойства молекулы O2

Энергии молекулярных орбиталей могут быть определены по данным спектров поглощения веществ в ультрафиолетовой области. Так, среди молекулярных орбиталей молекулы кислорода, образовавшихся в результате перекрывания p-АО, две

π-связывающие вырожденные (с одинаковой энергией) орбитали обладают меньшей энергией, чем σ-связывающая, впрочем, как и π*-разрыхляющие орбитали обладают меньшей энергией в сравнении с σ*-разрыхляющей орбиталью .В молекуле O2 два электрона с параллельными спинами оказались на двух вырожденных (с одинаковой энергией) π*-разрыхляющих молекулярных орбиталях (рис.14) Именно наличием неспаренных электронов и обусловлены парамагнитные свойства молекулы кислорода, которые станут заметными, если охладить кислород до жидкого состояния. Так, электронная конфигурация молекул О2 описывается следующим образом:

О2 [КК(σs)2s*)2z)2x)2y)2x*)1y*)1]

Буквами КК показано, что четыре 1 s-электрона (два связывающих и два разрыхляющих) практически не оказывают влияния на химическую связь.

Наилучшим способом квантовомеханической трактовки химической связи в настоящее время считается метод молекулярных орбиталей (МО). Однако он гораздо сложнее метода ВС и не столь нагляден, как последний. Существование связывающих и разрыхляющих МО подтверждается физическими свойствами молекул. Метод МО позволяет предвидеть, что если при образовании молекулы из атомов электроны в молекуле попадают на связывающие орбитали, то потенциалы ионизации молекул должны быть больше, чем потенциалы ионизации атомов, а если электроны попадают на разрыхляющие орбитали, то наоборот. Так, потенциалы ионизации молекул водорода и азота (связывающие орбитали) 1485 и 1500 кДж/моль соответственно — больше, чем потенциалы ионизации атомов водорода и азота 1310 и 1390 кДж/моль, а потенциалы ионизации молекул кислорода и фтора (разрыхляющие орбитали) 1170 и 1523 кДж/моль — меньше, чем у соответствующих атомов — 1310 и 1670 кДж/моль. При ионизации молекул прочность связи уменьшается, если электрон удаляется со связывающей орбитали (H2 и N2), и увеличивается, если электрон удаляется с разрыхляющей орбитали(О2 и F2).