Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
кмпн шпора.docx
Скачиваний:
55
Добавлен:
12.03.2015
Размер:
86.79 Кб
Скачать

9. Основные принципы моделирования молекулярных систем в молекулярной механике

Молекулярная механика расчетный эмпирический метод определения геометрических характеристик и энергии молекул. Основан на предположении о том, что энергия молекулы может быть представлена суммой вкладов, включающих связанные с длинами связей, валентными и торсионными углами.

В настоящее время термин «молекулярная механика» употребляется для определения широко используемого метода, позволяющего провести точный расчет геометрического строения молекул и их энергии на основе имеющихся экспериментальных данных. Он использует классическую идею о химических связях между атомами в молекуле и ван-дер-ваальсовых силах, действующих между валентно-несвязанными атомами.

В молекулярной механике электроны явным образом не рассматриваются, а лишь считаются причиной возникновения того потенциального поля, в котором находятся ядра. А величина этого потенциала определяется эмпирическим путем.

В молекулярной механике в расчетах применяется большое число параметров. Для каждой данной молекулы они должны быть известны из предыдущих исследований других молекул того же класса. Таким образом, область применения молекулярной механики ограничивается в том смысле, что изучаемая молекула должна принадлежать к заранее исследованному классу соединений.

При рассмотрении структур, находящихся на потенциальной поверхности, полезно придерживаться определенной терминологии. Каждой точке, относящейся к минимуму энергии, соответствует конформер. Для перехода изодного минимума в другой молекула должна пройти через разделяющую их седловую точку (перевал). В седловой точке реализуется затененная конформация с несколько растянутыми связями и деформированными валентными углами.

10. Потенциальная энергия молекулы в молекулярной механике

Если молекула, состоящая из N атомов и описываемая 3Nкоординатами xh деформируется по отношению к своей равновесной конфигурации с энергиейU0и координатами х0, то ее потенциальную энергию можно разложить в ряд Тейлора:

Потенциальная энергия молекулы целиком имеет электромагнитную природу и обычно задается в виде суммы отдельных составляющих:

которые соответствуют следующим типам взаимодействий: – потенциальная энергия валентных связей;- валентных углов;- торсионных углов;-плоских групп;- ван-дер-ваальсовых сил;- электростатических сил;- водородных связей. Эти составляющие имеют различный функциональный вид.

Валентные связи поддерживаются за счет потенциала . гдеi- номер связи в молекуле; - полное число валентных связей;-эффективная жесткость валентной связи;- длина связи:– равновесная длина связи. При расчетах обычно заменяют реальный потенциала, описывающий валентные взаимодействия, на параболический.

Валентные углы задаются потенциалом . Гдеi - номер валентного угла; - полное число валентных углов;-эффективная упругость валентного угла;- значение валентного угла; -его равновесное значение.

Энергия торсионных взаимодействий и потенциалов, соответствующих плоским группам, записывают в одинаковом виде:

где - номер торсионного угла;- номер гармоники;- константа:-вклад гармоники в потенциал торсионного угла;— кратность гармоники.

Потенциалы иотличаются константами.

Ван-дер-ваальсовы взаимодействия атомов, разделенных тремя и более валентными связями, описываются потенциалами Леннард-Джонса: . Параметры потенциала А и В зависят от типов атомовi и j, участвующих во взаимодействии; ,- где, и- координаты взаимодействующих атомов.

Электростатические взаимодействия задают кулоновским потенциалом; , где- парциальные заряды на атомах:- диэлектрическая проницаемость среды.

Водородные связи возникают и исчезают в процессе движения атомов между теми из них, которые имеют электростатические взаимодействия. Функциональный вид потенциала водородной связи похож на потенциал ван-дер-ваальсовых взаимодействий, но с более короткодействующими силами притяжения:.