Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Механика.doc
Скачиваний:
46
Добавлен:
13.05.2015
Размер:
8.34 Mб
Скачать

Контрольные вопросы

1. Какие столкновения называются упругими, а какие неупругими?

2. Запишите закон сохранения импульса для системы двух сталкивающихся тел.

3. Сформулируйте и запишите закон сохранения механической энергии.

4. При каком типе столкновения происходит изменение общей механической энергии? Как это изменение рассчитать?

5. Объясните физический смысл коэффициента восстановления скорости. Каким образом он характеризует столкновение.

6. Как определяется коэффициент потери механической энергии? Чему он равен при полностью неупругом столкновении?

7. Как определяется средняя сила взаимодействия при столкновении тел с массами m1 и m2?

8. Какими свойствами должны обладать тела в случае полностью неупругого столкновения?

9. Как в этом случае записывается закон сохранения импульса?

10. Выведите формулу (2.17), определяющую коэффициент потери механической энергии при полностью неупругом столкновении.

Лабораторная работа № 3 изучение плоского движения твердого тела

Цель работы: определение периода колебаний и момента инерции тела цилиндрической формы.

Теоретическая часть

Рассмотрим один из случаев плоского движения твердого тела, а именно: качение цилиндра по вогнутой цилиндрической поверхности.

П

Рис. 3.1.

лоским называется такое движение, при котором все частицы твердого тела движутся параллельно определенной плоскости.

Пусть – радиус цилиндрической поверхности,– масса цилиндра, – его радиус (рис. 1). Если цилиндр вывести из состояния равновесия, он будет совершать гармонические колебания по закону:

, (3.1)

где максимальное угловое отклонение цилиндра от вертикали,– период колебаний. Угловая скорость движения относительно оси цилиндрической поверхности находится с помощью дифференцирования выражения для угла отклонения:

, (3.2)

где – амплитуда или максимальное значение угловой скорости этого движения. Катящийся без проскальзывания цилиндр вращается также относительно своей собственной геометрической оси. Максимальную угловую скорость этого движения можно представить в виде:

, (3.3)

Будем рассматривать полную кинетическую энергию цилиндра как сумму кинетической энергии движения относительно оси цилиндрической поверхности и кинетической энергиидвижения относительно собственной оси. При прохождении положения равновесия:

, (3.4)

, (3.5)

где момент инерции цилиндра относительно оси цилиндрической поверхности, – момент инерции относительно собственной оси цилиндра. При написании соотношения (3.4) была использована теорема Штейнера, согласно которой: .

В процессе движения цилиндра периодически происходит превращение кинетической энергии в потенциальную и обратно. Максимальное значение потенциальной энергии будет равно (см. рис. 3.1):

. (3.6)

Будем полагать, что цилиндр совершает малые колебания около положения равновесия. Тогда и, следовательно:

. (3.7)

По закону сохранения механической энергии:

. (3.8)

Подставим полученные ранее выражения для кинетической энер-гии (3.4), (3.5) и потенциальной (3.7) в соотношение (3.8):

. (3.9)

Отсюда можно найти период колебаний:

. (3.10)

Кроме того, соотношение (3.9) можно использовать для определения момента инерции цилиндра , измерив экспериментально период колебаний на данной вогнутой цилиндрической поверхности:

. (3.11)