Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие (Маневский-Ниткин)-2013 оконч..doc
Скачиваний:
222
Добавлен:
05.06.2015
Размер:
3.42 Mб
Скачать

4.2. Специальные стали и сплавы.

Эти материалы применяют для изготовления деталей и элементов конструкций, работающих в специфических условиях эксплуатации. В группу этих материалов входят высоколегированные стали и сплавы, в которых суммарное содержание легирующих элементов достигает 50% и более.

Для деталей, которые по условиям эксплуатации должны иметь очень высокую (>1500МПа) прочность и одновременно высокое сопротивление хрупкому разрушению (KCU 40-50 Дж/см2), применяют среднеуглеродистые комплексно-легированные высокопрочные стали: 40ХГСН3ВА, 40ХН2СМА, 30Х2ГСН2МА и др. Их подвергают изотермической закалке или закалке с низкотемпературным отпуском. После указанных видов упрочнения достигается требуемая высокая прочность (=1600…2000МПа) и хорошая ударная вязкость (KCU 45…65Дж/см2), что объясняется наличием в составе сталей никеля, их мелкозернистой структурой и высоким качеством.

Коррозионностойкие стали применяют для изготовления деталей и элементов конструкций , работающих в условиях агрессивных сред. Такими средами являются влажная атмосфера, почва, морская и речная вода, водные растворы солей, щелочей, кислот. К указанным сталям относятся хромистые и хромоникелевые нержавеющие стали. Основным условием обеспечения высокой коррозионной стойкости этих сталей является содержание в них хрома в количестве не менее 12%. При таком количестве хрома на поверхности стали образуется тонкая, весьма плотная и прочная защитная пленка из оксидов хрома (Cr2О3). Стали 12Х13, 20Х13, 30Х13, 40Х13, содержащие около 13%Cr, устойчивы против коррозии в атмосфере и воде. Стали с содержанием хрома 25…30% (12Х28) устойчивы против коррозии в азотной кислоте, в слабых растворах соляной кислоты и ряде других кислот.

Более широко используют хромоникелевые стали 12Х18Н9, 12Х18Н10Т, отличающиеся коррозионной стойкостью в различных агрессивных средах, в том числе в морской воде, лаках, щелочах, кислотах. Легирование титаном (0,1%Ti в стали 12Х18Н10Т) обеспечивает защиту изделий из этой стали от межкристаллитной коррозии, возникающей вследствие локального обеднения стали хромом (<12%) вдоль межзеренных границ.

Для деталей, работающих в условиях агрессивных газовых сред при высоких (>550°С) температурах применяют жаростойкие стали: хромистые (15Х28) и хромоникелевые (20Х23Н18), а также жаростойкие сплавы (Х20Н80). Для повышения жаростойкости в состав сталей вводят в небольших количествах (не более 1%) алюминий и кремний. Область применения этих материалов – детали ДВС и газотурбинных установок, химическое оборудование.

Для деталей, работающих в условиях длительного нагружения при высоких температурах (Траб.превышает 0,3Тплавл.°С), используют жаропрочные стали и сплавы. Основной характеристикой этих материалов является предел длительной прочности. Это напряжение, при котором материал разрушается при заданной температуре эксплуатации и за определенный промежуток времени. Например,=200МПа означает, что при рабочем напряжении 200МПа и температуре 700°С разрушение произойдет не ранее, чем через 1000часов. Для деталей, работающих при температурах 450…600°С используют низкоуглеродистые экономнолегированные стали 12ХМ, 12Х1МФ, 15ХМ. Хромоникелевые стали (12Х18Н9Т, О8Х18Н10Т) применяют для деталей с рабочей температурой до 850°С, а железоникелевые сплавы типа ХН35ВТ(14…16%Cr, 34…38%Ni, 3%W, 1,3%Ti, остальное Fe), или сплавы на никелевой основе (Х20Н77ТЮР) применяют для работы при температурах, превышающих 850°С. Высокое содержание хрома в этих сплавах придает им необходимую жаростойкость.

Хладостойкими называют материалы, сохраняющие достаточную вязкость при низких температурах от 0 до -269°С. Воздействию низких температур подвергаются металлоконструкции, строительные машины и вагоны, автомобили, работающие в северных районах при температурах до -60°С. Основной характеристикой этих материалов является температурный порог хладноломкости (Т50,°С). Это температура, по достижении которой материал становится хрупким. Хладноломкость характерна для сталей и сплавов с кристаллическими решетками ОЦК или ГПУ (см. раздел 1.2.). Для надежной работы изделий необходимо, чтобы значение Т50 данного материала было ниже его рабочей температуры. Эффективными методами снижения значения Т50 являются уменьшение в сталях содержания углерода, формирование мелкозернистой структуры (размер зерен 10…20мкм), повышение качества стали, легирование никелем, применение улучшения. Наиболее востребованными из хладостойких материалов являются низкоуглеродистые микролегированные стали с допустимой температурой эксплуатации до -50°С (стали 09Г2С, 14Г2АФ), а также среднеуглеродистые стали (40,45,40Х), подвергаемые обязательному улучшению (закалке и высокотемпературному отпуску). Стали, легированные никелем (ОН6, ОН9, содержащие соответственно 6 и 9% Ni) могут работать в диапазоне температур от -100 до -150°С. Эти стали хорошо свариваются , так как содержание углерода в них меньше 0,1%, их сварные соединения не нуждаются в дополнительной термообработке.

Фрикционными называют материалы, обеспечивающие при эксплуатации достаточно высокое и стабильное значение коэффициента трения, что является необходимым условием эффективной работы фрикционных узлов. К таким узлам в транспортных машинах относятся муфты сцепления и тормозные механизмы. Важным критерием при выборе материала для этих узлов является фрикционная теплостойкость. Это свойство материала обеспечивать стабильный коэффициент трения в условиях теплового и механического воздействия при работе фрикционного узла. Применяют две группы фрикционных материалов: композиты на полимерной основе (асбесто-фрикционные и безасбестовые) с рабочей температурой 200…450°С и спеченные фрикционные материалы с рабочей температурой до 800…900°С. Наиболее известными из этой группы являются спеченные материалы на основе медного и железного порошков (см. раздел 4.6.).

Антифрикционными называют материалы, при эксплуатации которых реализуются стабильно низкие значения коэффициента трения. Это обеспечивает высокую износостойкость указанных материалов и работоспособность подшипников скольжения, где эти материалы в основном применяют. Различают металлические, неметаллические и комбинированные антифрикционные материалы. Общим требованием к структуре антифрикционных материалов является сочетание мягкой и твердой фаз. Твердая фаза обеспечивает несущую способность и износостойкость материала, а мягкая обеспечивает его хорошую прирабатываемость и образует на поверхности трения микрополости, в которых удерживается смазка. Из металлических материалов наиболее известны баббиты (Б16,Б83), оловянистые (Бр010Ф1), безоловянистые (БрС30, БрАЖ9-4Л)бронзы. Стоимость этих сплавов весьма велика, поэтому вместо них применяют сплавы на алюминиевой основе (А09-1, А09-2), а также антифрикционные чугуны (АСЧ, АЧВ, АЧК). Чугуны недефицитны, но плохо прирабатываются, чувствительны к недостатку смазки и к ударным нагрузкам. Поэтому их применяют в тихоходных узлах трения.

По обеспечению работоспособности узла трения в условиях ограниченной подачи смазки или без нее указанные сплавы уступают материалам, получаемым методами порошковой металлургии. Отличительная особенность структуры этих материалов – наличие пор, что обеспечивает эффект самосмазываемости за счет смазки, находящейся в этих порах. Запас смазки в порах материала обеспечивает работу подшипника при аварийном прекращении подачи смазки извне.