Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УМК Физика твердого тела.doc
Скачиваний:
197
Добавлен:
23.03.2016
Размер:
2.97 Mб
Скачать

Глава2. Методы структурного анализа

2.1. Общие положения.

Для определения структуры твердых тел используются дифракционные методы. Все методы основаны на общих принципах дифракции волн или частиц при прохождении через кристалл, являющийся для них своеобразной дифракционной решеткой, параметр которой по порядку величины равен среднему межатомному расстоянию (10-10м). Для получения дифракционной картины существенно, чтобы длина волны используемого излучения была сравнима с этим средним межатомным расстояниям. Различают следующие методы: рентгенографии, электронографии, нейтронографии.

В рентгенографии применяются рентгеновские лучи с длинами волн от 0,7..10-10 до 3. 10-10 м, в электронографии электроны с длинами волн де Бройля – от 3.10-12 до 6. 10-12 м, в нейтронографии – тепловые электроны с длиной волны порядка 10-10 м.

По дифракционной картине можно сразу качественно судить о структуре твердого тела. Если дифракционная картина представляет набор точечных пятен (рефлексов), получающихся при рассеянии от определенных семейств атомных плоскостей (hkl), то твердое тело является монокристаллом; если дифракционная картина представляет собой набор тонких концентрических колец, то твердое тело находится в поликристаллическом состоянии; наконец, если на дифракционной картине присутствует одно, максимум два диффузных гало, то тело находится в аморфном состоянии (рис. 2.1.1, 2.1.2 , 2.1.3).

2.2. Дифракция Вульфа – Брэгга.

Вскоре после открытия М.Лауэ (1912) электромагнитной природы рентгеновских лучей русский ученый Ю.В. Вульф (1912) и независимо от него английские физики отец и сын Г. и Л.Брэгги дали простое истолкование интерференции рентгеновских лучей, объяснив это явление зеркальным отражением от атомных плоскостей.

Пусть на кристалл, который можно представить состоящим из семейства параллельных атомных плоскостей, находящихся на одинаковом межплоскостном расстоянии d (рис 2.2.1), под углом падает параллельный пучок монохроматических рентгеновских лучей с длиной волны .

Отраженные от атомных плоскостей под тем же углом ( зеркальное отражение), параллельные лучи I и II интерферируют, т.е. усиливают или ослабляют друг друга в зависимости от разности хода между ними. Если разность хода равна целому числу n длин волн , то наблюдается интерференционный максимум. Из рис. 2.2.1 видно, что это имеет место, когда

или . (2.2.1)

Условие (2.2.1), при котором возникает интерференционный максимум, и носит название формулы Вульфа – Брэгга. Зная брэгговские углы отражения , которые определяются из дифракционной картины, можно вычислить межплоскостные расстояния d, а по ним и индексы интерференции hkl.

Условие дифракции в терминах обратной решетки. Рассмотрим обратную решетку и мысленно проведем атомную плоскость из семейства атомных плоскостей (hkl) c межплоскостным расстоянием d. Пусть на решетку падает излучение с волновым вектором и выполняется условие дифракции Вульфа-Брэгга (2.2.1). Тогда из рис.2.2.1 и ранее доказанной теоремы, устанавливающей связь между семейством атомных плоскостей и вектором обратной решетки, можно записать следующую цепочку равенств:

гдеm – порядок дифракционного максимума. При m=1 условие дифракционного максимума принимает окончательный вид

(2.2.2)

Умножив обе части уравнения (2.2.2) на получим

(2.2.3)

Уравнение (2.2.3) можно рассматривать как закон сохранения импульса для кристаллической решетки.