Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
НГПО.doc
Скачиваний:
498
Добавлен:
25.11.2018
Размер:
9.22 Mб
Скачать

4.14. Режим работы скважинных насосов. Динамограммы работы

Диаграмму нагрузки на устьевой шток в зависимости от его хода называют динамограммой, а ее снятие - динамометрированием ШСНУ. Оно осуществляется с помощью динамографа. В зависимости от принципа работы различаются механические, гидравлические, электрические, электромагнитные, тензометрические и другие динамографы.

В наиболее распространенном гидравлическом динамографе типа ГДМ-3 (рис. 4.27.) действующая на шток нагрузка передается через рычажную систему на мембрану камеры 9, заполненной жидкостью (спиртом или водой), где создается повышенное давление.

Давление жидкости в камере, пропорциональное нагрузке на шток, передается по капиллярной трубке 8 на геликсную пружину 7. При увеличении давления геликсная пружина разворачивается, а перо 6, прикрепленное к ее свободному концу, чертит линию на бумажном диаграммном бланке 5. Бланк закреплен на подвижном столике, который с помощью приводного механизма перемещается пропорционально ходу устьевого штока. В результате получается развертка нагрузки р в зависимости от длины хода s.

Для снятия динамограммы измерительная часть динамографа (месдоза и рычаг) вставляется между траверсами канатной подвески штанг, а нить 1 приводного механизма самописца прикрепляется к неподвижной точке (устьевому сальнику). Масштаб хода изменяется сменой диаметра шкива 2 самописца (1 : 15, 1 : 30, 1 : 45), а усилия - перестановкой опоры месдозы и рычага (40, 80 и 100 кН).

Рис. 4.27. Принципиальная схема гидравлического динамографа и его установки

между траверсами канатной подвески:

1 - нить приводного механизма; 2 - шкив ходового винта; 3 - ходовой винт столика; 4 - направляющие салазки столика; 5 - бумажный бланк, прикрепленный к столику; 6 - пишущее перо геликсной пружины: 7 - геликсная пружина; 8 - капиллярная трубка; 9- силоизмерительная камера; 10- нажимной диск; 11 -месдоза (верхний рычаг силоизмерительной части); 12 - рычаг (нижний) силоизмерительной части.

Рис. 4.28. Динамограммы работы штангового насоса с учетом статических нагрузок и сил трения (а), инерционных (б) и динамических (в) нагрузок:

В. м. т. - верхняя «мертвая» точка; Н. м. т. — нижняя «мертвая» точка (стрелками показан ход записи динамограммы)

Изучение динамограммы позволяет определить максимальную и минимальную нагрузки, длины хода штока и плунжера, уяснить динамические процессы в колонне штанг, выявить ряд дефектов и неполадок в работе ШСНУ и насоса.

На рис. 4.28. а показана простейшая динамограмма нормальной работы насоса, которая имеет форму правильного параллелограмма.

Силы трения направлены против движения, поэтому при ходе вверх они увеличивают нагрузку, а при ходе вниз - уменьшают. Инерционные нагрузки вызывают «инерционный поворот» динамограммы относительно нормального ее положения (рис. 4.28. б). Волнистый характер линий обусловлен колебательными процессами в штангах (рис. 4.28. в). При значительных динамических нагрузках надежная расшифровка динамограмм из-за их сложного вида затруднительна.

В таких условиях представляет интерес получение скважинных динамограмм, соответствующих нижнему концу штанговой колонны. Практические динамограммы по виду всегда отличаются от теоретических, сопоставление с которыми позволяет выявить дефекты и неполадки в работе установки и насоса (рис. 4.29.).

Рис. 4.29. Практические динамограммы работы штангового насоса: а —нормальная тихоходная работа; б — влияние газа; в - превышение подачи насоса над притоком в скважину; г - низкая посадка плунжера; д - выход плунжера из цилиндра невставного насоса; е -удары плунжера о верхнюю ограничительную гайку вставного насоса; ж - утечки в нагнетательной части; з — утечки so всасывающей части; и - полный выход из строя нагнетательной части; к—полный выход из строя всасывающей части; л - полуфонтанный характер работы насоса; м — обрыв штанг (пунктиром показаны линии теоретической динамограммы)

Осложнения при эксплуатации насосных скважин обусловлены большим газосодержанием на приеме насоса, повышенным содержанием песка в продукции (пескопроявлением), наличием высоковязких нефтей и водонефтяных эмульсий, существенным искривлением ствола скважины, отложениями парафина и минеральных солей, высокой температурой и др.