Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
НГПО.doc
Скачиваний:
498
Добавлен:
25.11.2018
Размер:
9.22 Mб
Скачать

4.51. Схема работы и принцип действия диафрагменного насоса

Скважинные диафрагменные насосы предназначены для работы в условиях больших пескопроявлений (значительного содержания механических примесей) или для откачки агрессивных жидкостей, так как перекачиваемая жидкость соприкасается только с клапанами, диафрагмой и стенками рабочей полости Подача УЭДН составляет 4...16м3/сут при напоре 650...1700м. Межремонтный период их при откачке агрессивных сред с массовым содержанием механических примесей до 1,8% существенно больше, чем межремонтные периоды скважинных штанговых насосов и ЭЦН.

Наиболее важной особенностью глубинных диафрагменных насосов является расположение всех его рабочих органов, кроме всасывающего и нагнетательного клапанов, в маслозаполненной герметичной камере. Эта камера отделена от добываемой жидкости гибкой диафрагмой. Таким образом, воздействию добываемой жидкости подвергается минимально возможное количество деталей глубинного насоса.

Схема диафрагменного насоса (рис. 4.76.) конструктивно объединяет насосные узлы с маслозаполненным асинхронным электродвигателем. С ротором электродвигателя жестко связана ведущая шестерня конического редуктора. На ведомой шестеренке смонтирован эксцентрик, создающий поступательное движение плунжеру насоса.

Рис. 4.76. Схема диафрагменного насоса:

1 -двигатель; 2 - конический редуктор; 3- кулачок-эксцентрик; 4 -рабочий плунжер; 5- клапанный регулятор работы диафрагмы; 6- диафрагма; 7-клапан насоса

Возвратное движение плунжера осуществляется с помощью цилиндрической пружины. Все камеры электродвигателя и насоса, вплоть до диафрагмы, заполнены жидким маслом. Для компенсации изменения объема масла при нагреве в нижней части двигателя имеется резиновый мешок-сильфон. Количество масла, закачиваемого рабочим поршнем под диафрагму, должно обеспечивать необходимую величину перемещения диафрагмы, зависящую от условий эксплуатации. Специальное клапанное устройство, связанное с движением диафрагмы насоса, автоматически регулирует объем закачиваемого масла. При лишнем количестве масла толкатель диафрагмы открывает клапан сброса масла, при недостаточном - клапан поступления масла. Шариковые всасывающий и нагнетательный клапаны диафрагменного насоса смонтированы в его головке. В этой же головке закреплены всасывающий и нагнетательный патрубки с пескоотделителем. Добываемая жидкость поступает к всасывающему патрубку через фильтр. Электродвигатель оснащен кабельным вводом для подсоединения специального кабеля. Система разборных уплотнений герметизирует основные узлы агрегата, упрощая его ремонт.

Наиболее ответственными узлами агрегата являются редуктор, диафрагма и клапаны.

4.52. Схема работы и принцип действия струйного насоса

В последние десятилетия ведутся активные поиски новых способов добычи нефти, особенно в области эксплуатации наклонных скважин. При использовании бесштанговых гидроприводных струйных насосных установок вместо УСШН в скважинах со значительной кривизной ствола энергетические затраты существенно снижаются, а межремонтный период (МРП) скважинного оборудования увеличивается. Компактность, высокие монтажеспособность, эффективность и степень унификации узлов позволяют применять гидроприводные насосные установки при эксплуатации кустовых скважин в труднодоступных районах Сибири и на морских месторождениях. Изменение условий эксплуатации многих нефтяных месторождений, связанное с увеличением числа объектов разработки в труднодоступных северных районах и на континентальном шельфе, вызвало возрождение интереса к струйным насосным установкам.

Струйные насосы являются разновидностью гидроприводных насосов и обладают всеми достоинствами этого вида оборудования. Благодаря своим конструктивным особенностям струйные аппараты отличаются высокой надежностью и эффективностью, особенно в осложненных условиях эксплуатации, например, при добыче пластовой жидкости со значительным содержанием механических примесей и коррозионно-активных веществ из наклонно направленных скважин.

К преимуществам струйных насосов относятся их малые габариты, большая пропускная способность и возможность стабильно отбирать пластовую жидкость с высоким содержанием свободного газа. Кроме того, проста конструкция установок, отсутствуют движущиеся детали, возможно исполнение струйного насоса в виде свободного, сбрасываемого агрегата.

Рис. 4.77. Схема струйного насоса (а) и движение жидкостей в нем (б): 1 — подвод откачиваемой жидкости; 2 - подвод рабочей жидкости: 3 - входное кольцевое сопло; 4—рабочее сопло; 5 — камера смешения; 6 - диффузор; I — невозмущенная откачиваемая жидкость; II - пограничный слой; III - невозмущенная рабочая жидкость (ядро)

В струйном насосе или инжекторе поток откачиваемой жидкости перемещается от забоя скважины до устья скважины за счет получения энергии от потока рабочей жидкости, подаваемого поверхностным силовым насосом с устья скважины. Нагнетание скважинкой жидкости осуществляется благодаря явлению эжекции в рабочей камере, т. с. смешению скважинной жидкости с рабочим потоком жидкости, обладающим большой энергией (рис. 4.77.).

Режим работы струйного насоса характеризуется следующими параметрами: рабочий напор НР, затрачиваемый в насосе и равный разности напоров рабочего потока на входе в насос (сечение ВВ) и на выходе из него (сечение С—С), полезный напор НП, создаваемый насосом и равный разности напоров подаваемой жидкости за насосом (сечение С—С) и перед ним (сечение А—А); расход рабочей жидкости Q1, полезная подача Q0. КПД струйного насоса равен отношению полезной мощности к утраченной и может достигать величины, равной 20...35 %:

.

Такое значение КПД струйных насосов обусловлено большими потерями энергии, сопровождающими рабочий процесс: в камере смешения (на вихреобразование и гидравлическое трение жидкости о стенки камеры); в элементах насоса, подводящих и отводящих жидкость (в рабочем и кольцевом соплах и диффузоре).

Струйный насос работает следующим образом. При истечении рабочей жидкости со скоростью V1 из сопла в затопленное пространство сразу за передним срезом сопла на поверхности струи возникает область смешения. Быстрые частицы проникают в окружающий медленный поток невозмущенной жидкости, подсасываемый через кольцевой проход в камеру со скоростью V0, и передают ей энергию. Этот процесс, основанный на интенсивном вихреобразовании, происходит в непрерывно утолщающемся по длине струйном пограничном слое. Вместе с тем, внутренняя область рабочей струи, а именно ее ядро и внешняя область невозмущенной подсасываемой жидкости, постоянно уменьшается и на расстоянии L от рабочего сопла потоки рабочей и откачиваемой жидкостей уже полностью перемешаны. На дальнейшем участке камеры смешения происходит только выравнивание профиля скоростей потока жидкости. Чаще всего в струйных насосах применяются цилиндрические камеры смешения, технологически простые в изготовлении, обеспечивающие относительно высокий КПД. Для преобразования достаточно высокой скорости потока в камере смешения в давление поток направляется в диффузор.