Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Термех (шпоры).docx
Скачиваний:
39
Добавлен:
21.04.2019
Размер:
1.76 Mб
Скачать

27. Решение задачи Кеплера в формализме Лагранжа.

Кинетическая энергия в центрально-симметричном поле:

Потенциальная энергия:

M-масса солнца, m-масса планеты.

В этом случае система имеет 2 степени свободы:

Уравнения Лагранжа-Эйлера будут:

тогда:

Т. к.

то уравнение Лагранжа-Эйлера явно не зависит от , то - циклическая величина.

Пусть

Перепишем (1) с учетом введенных констант:

r=r(φ)

Каким расст. от силового центра в зав. от φ:

Общее решение:

28. Законы Кеплера.

Законы Кеплера — три эмпирических соотношения, интуитивно подобранных на основе анализа астрономических наблюдений

Первый закон Кеплера (закон эллипсов).Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.Форма эллипса и степень его сходства с окружностью характеризуется отношением , где c — расстояние от центра эллипса до его фокуса (половина межфокусного расстояния), a — большая полуось. Величина e называется эксцентриситетом эллипса. При c = 0 и e = 0 эллипс превращается в окружность. Второй закон Кеплера (закон площадей).Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные времена радиус-вектор, соединяющий Солнце и планету, описывает равные площади. Третий закон Кеплера (гармонический закон)Квадраты периодов обращения планет вокруг Солнца относятся, как кубы больших полуосей орбит планет. Справедливо не только для планет, но и для их спутников. , где T1 и T2 — периоды обращения двух планет вокруг Солнца, а a1 и a2 — длины больших полуосей их орбит.Ньютон установил, что гравитационное притяжение планеты определенной массы зависит только от расстояния до неё, а не от других свойств, таких, как состав или температура. Он показал также, что третий закон Кеплера не совсем точен — в действительности в него входит и масса планеты: , где M — масса Солнца, а m1 и m2 — массы планет.

29. Основные элементы описания линейных многомерных колебаний в формализме Лагранжа.

Введем многомерный вектор:

При введении многомерных векторов и матриц уравнение функции Лагранжа для колеблющейся многомерной системы в линейном приближении можем переписать в виде:

42. Фазовое пространство. Закон сохранения потока точек фазового пространства

Фазовое пространство это множество точек которые задается с помощью осей на которых откладываются обобщенныекоордин.

Распр. т. фазового пространства определённая физическая величина не изменяется т.е. пост.

30.УРАВНЕНИЯ КОЛЕБАНИЙ МНОГОМЕРНОЙ СИСТЕМЫ В ФОРМАЛИЗМЕ ЛАГРАНЖА В ЛИНЕЙНОМ ПРИБЛИЖЕНИИ.

Запишем уравнение в виде Лагранжа-Эйлера:

В дальнейшем будем рассматривать мех.сист. у которых матрицы m и æ являются симметричными.

;

31 ОПРЕДЕЛЕНИЕ СОБСТВЕННЫХ ЧАСТОТ МНОГОМЕРН.КОЛЕБ В ЛИН.ПРИБЛЕЖЕНИИ.

Будем рассматривать р-е ур-ийдв-я кол-ся мех-ой сис-мы в линприбл.,т.е когда будем строить ф-ю Лагранжа, то ф-ии будет реализовывать разложение слагаемых до 2ого порядка по оклон. обобщающих координ. от состояния устойчивого равновесия

L(ϕ,ψ,ϕ,ψ)Пусть механич. сис-ма имеет r степеней свободы. Эта механич. cис-маопредел-сяобобщ .коорд. коорд-ми q1,q2….qr..Обозначим qr,где L=1,2….r,тогда L=L(qλ,qλ)=T-U(qλ)

Будем рассматривать состо-я мех сис-мы,гдепотенц. энергия минимальна.Xλ=qλ-q(0)λ отклон. обобщ. коорд-тыот положения равновесия.U(qλ)=U(q(0)λ+xλ)= U(q(0)λ)+ + +….

T= Ф-ю Лагранжа для колеб. многомерной сис-мы в лин.приближении можем записать в виде L= где координаты опред.пар-ми коэ-ты