Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
билеты по электротехнике.docx
Скачиваний:
13
Добавлен:
22.04.2019
Размер:
2.24 Mб
Скачать

3) Диоды Шотки.

Шоттки диод, диод с барьером Шотки, Полупроводниковый диод, выполненный на основе контакта металл — полупроводник; назван в честь немецкого учёного В. Шотки, создавшего в 1938—39 основы теории таких диодов. При изготовлении Ш. д. на очищенную поверхность полупроводникового кристалла наносят тонкий слой металла (Au, Al, Ag, Pt и др.) методами вакуумного испарения, катодного распыления либо химического или электролитического осаждения. В Ш. д. (в приконтактной области полупроводника), как и в диодах с электронно-дырочным переходом (в области этого перехода), возникает Потенциальный барьер , изменение высоты которого под действием внешнего напряжения (смещения) приводит к изменению тока через прибор (см. рис. 2). Ток через контакт металл — полупроводник, в отличие от тока через электронно-дырочный переход, обусловлен только основными носителями заряда.

         Отличительные особенности Ш. д. по сравнению с полупроводниковыми диодами др. типов: возможность получать требуемую высоту потенциального барьера посредством выбора соответствующего металла; значительная нелинейность вольтамперной характеристики при малых прямых смещениях; очень малая инерционность (до 10―11 сек); низкий уровень ВЧ шумов; технологическая совместимость с интегральными схемами простота изготовления. Ш. д. служат главным образом СВЧ-диодами различного назначения (детекторными, смесительными, лавинно-пролётными, параметрическими, импульсными, умножительными); кроме того, Ш. д. применяют в качестве приёмников излучения детекторов ядерного излучения модуляторов света; их используют также в выпрямителях тока ВЧ, солнечных батареях

Рис. 2. Типичная вольтамперная характеристика полупроводникового диода с р — n-переходом: U — напряжение на диоде; I — ток через диод; U*oбр и I*oбр — максимальное допустимое обратное напряжение и соответствующий обратный ток; U — напряжение стабилизации.

Структура детекторного Шотки диода: 1 — полупроводниковая подложка; 2 — эпитаксиальная плёнка; 3 — контакт металл — полупроводник; 4 — металлическая плёнка; 5 — внешний контакт.

Билет 13

1)Входные и взаимные проводимости ветвей. Входное сопротивление

На рис. 2.15,а изображена так называемая скелетная схема пассивной цепи. На ней показаны вевти и узлы. В каждой ветви имеется сопротивление. Выделим в схеме две ветви: m и k. Поместим в ветвь m ЭДС Еm (других ЭДС в схеме нет). Выберем контуры в схеме так, чтобы k-ветвь входила только в k-контур, а m-ветвь — только в m-контур. ЭДС Еm вызовет токи в ветвях k и m:

Коэффициенты g имеют размерность проводимости.

Коэффициент g с одинаковыми индексами (gmm) называют входной проводимостью ветви (ветви m). Он численно равен току в ветви m, возникшему от действия ЭДС Еm = 1В (единичной ЭДС):

Im = 1mm.

Коэффициенты g с разными индексами называют взаимными проводимостями. Так, gkm есть взаимная проводимость k и m-ветвей. Взаимная проводимость gkm численно равна току в k-ветви, возникающему от действия единичной ЭДС в m-ветви1.

Входные и взаимные проводимости ветвей используют при выводе общих свойств линейных электрических цепей (см. § 2.16 и 2.18) и при расчете цепей по методу наложения [см. формулу (2.7)].

Входные и взаимные проводимости могут быть определены расчетным и опытным путями.

При их расчетном определении составляют уравнения по методу контурных токов, следя за тем, чтобы ветви, взаимные и входные проводимости которых представляют интерес, входили каждая только в свой контур. Далее находят определитель системы А и по нему необходимые алгебраические дополнения:

По формуле (2.10) gkm может получиться либо положительной, либо отрицательной величиной. Отрицательный знак означает, что ЭДС Em, направленная согласно с контурным током в m-ветви, вызывает ток в k-ветви, не совпадающей по направлению с произвольно выбранным направлением контурного тока Ik по k-ветви.

При опытном определении gmm и gkm в m-ветвь схемы (рис. 2.15, б) включают источник ЭДС Em, а в k-ветвь — амперметр (миллиам-перметр). Поделим ток Ik на ЭДС Em и найдем значение gkm. Для определения входной проводимости ветси m(gmm) необходимо измерить ток в m-ветви, вызванной ЭДС Em. Частное от деления тока m-ветви на эдс m-ветви и дает gmm.

Выделим m-ветвь, обозначив всю остальную часть схемы (не содержащую ЭДС) некоторым прямоугольником (рис. 2.16). Вся схема, обозначенная прямоугольником, по отношению к зажимам ab обладает некоторым сопротивлением. Его называют входным сопротивлением. Входное сопротивление m-ветви обозначим Rвхm. Тогда

Таким образом, входное сопротивление m-ветви есть величина, обратная входной проводимости этой ветви. Его не следует смешивать с полным сопротивлением m-контура в методе контурных токов. Пример 15. Определить входную g11 и взаимную g12 проводимости в схеме рис. 2.13.

Решение. Контуры в схеме рис. 2.13 выбраны так, что ветвь / (ветвь cbm) с источником ЭДС £, входит только в первый контур, а ветвь 2 (ветвь са)с источником ЭДС E2 — во второй.

Поэтому можно воспользоваться определителем системы Δ и алгебраическими дополнениями Δ11 и &Delta12, составленными по данным примера 13: