Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
билеты по электротехнике.docx
Скачиваний:
13
Добавлен:
22.04.2019
Размер:
2.24 Mб
Скачать

3)Схема включения транзистора с общей базой

 Схема с общей базой

Рассмотренный выше пример построения усилителя электрических сигналов с помощью транзистора является схемой включения с общей базой. На рис. 3.5. приведена электрическая принципиальная схема включения транзистора с общей базой.

Рис. 3.5. Включение транзистора по схеме с общей базой

Основные параметры, характеризующие эту схему включения получим следующим образом:

1. Коэффициент передачи по току:

.

(3.3)

2. Входное сопротивление:

.

(3.4)

Из (3.4) следует, что входное сопротивление транзистора, включенного в схему с общей базой, очень невелико и определяется, в основном, сопротивлением эмиттерного p-n-перехода в прямом направлении. На практике оно составляет единицы – десятки  . Это следует отнести к недостаткам усилительного каскада, так как приводит к нагружению источника входного сигнала.

3. Коэффициент передачи по напряжению:

.

(3.5)

Коэффициент передачи по напряжению может быть достаточно большим (десятки – сотни единиц), так как определяется, в основном, соотношением между сопротивлением нагрузки   и входным сопротивлением.

4. Коэффициент передачи по мощности:

.

(3.6)

Для реальных схем коэффициент передачи по мощности равняется десятки – сотни единиц.

Билет 18

1)Закон ома для ветвей с источником эдс

Рис. 1

Возьмём два участка цепи a-b и c-d (см. рис. 1) и составим для них уравнения в комплексной форме с учётом указанных на рис. 1 положительных напряжений и токов.

Обьядиняя оба случая получим.

(1)

Или для постоянного тока

(2) Формулы (1) и (2) являются аналитическим выражением закона Ома для участка цепи с источником ЭДС, согласно которому ток на участке цепи с источником ЭДС равен алгебраической сумме напряжения на зажимах участка цепи и ЭДС деленной на сопротивление участка. В случае переменного тока все указанные величины суть комплексы. При этом ЭДС и напряжение берут со знаком “+”, если их направление совпадает с выбранным направлением тока, и со знаком “-” если их направление противоположно направлению тока.

2)Расчет трехфазных цепей при соединении звезда-звезда без нулевого провода

Трехпроводная электрическая цепь

Схема соединения источника и приемника звездой без нейтрального провода приведена на рис. 3.10.

Рис. 3.10

При симметричной нагрузке, когда Za = Zb = Zc = Zφ, напряжение между нейтральной точкой источника N и нейтральной точкой приемника n равно нулю, UnN = 0.

Соотношение между фазными и линейными напряжениями приемника также равно  , т.е. UФ = UЛ /  , а токи в фазах определяются по тем же формулам (3.12, 3.13), что и для четырехпроводной цепи. В случае симметричного приемника достаточно определить ток только в одной из фаз. Сдвиг фаз между током и соответствующим напряжением φ = arctg (X / R).

При несимметричной нагрузке Za ≠ Zb ≠ Zc между нейтральными точками приемника и источника электроэнергии возникает напряжение смещения нейтралиUnN.

Для определения напряжения смещения нейтрали можно воспользоваться формулой межузлового напряжения, так как схема рис 3.10 представляет собой схему с двумя узлами,

(3.14)

,

где: Ya = 1 / ZaYb = 1 / ZbYc = 1 / Zc – комплексы проводимостей фаз нагрузки.

Очевидно, что теперь напряжения на фазах приемника будут отличаться друг от друга. Из второго закона Кирхгофа следует, что

(3.15)

Úa = ÚA - ÚnN; Úb = ÚB - ÚnN; Úc = ÚC - ÚnN.

Зная фазные напряжения приемника, можно определить фазные токи:

(3.16)

İa = Úa / Za = Ya Úa; İb = Úb / Zb = Yb Úb; İc = Úc / Zc = Yc Úc.

Векторы фазных напряжений можно определить графически, построив векторную (топографическую) диаграмму фазных напряжений источника питания и UnN (рис. 3.11).

При изменении величины (или характера) фазных сопротивлений напряжение смещений нейтралиUnN может изменяться в широких пределах. При этом нейтральная точка приемника n на диаграмме может занимать разные положения, а фазные напряжения приемника Úa, Úb и Úc могут отличаться друг от друга весьма существенно.

Таким образом, при симметричной нагрузке нейтральный провод можно удалить и это не повлияет на фазные напряжения приемника. При несимметричной нагрузке и отсутствии нейтрального провода фазные напряжения нагрузки уже не связаны жестко с фазными напряжениями генератора, так как на нагрузку воздействуют только линейные напряжения генератора. Несимметричная нагрузка в таких условиях вызывает несимметрию ее фазных напряжений Úa, Úb, Úc и смещение ее нейтральной точки n из центра треугольника напряжений (смещение нейтрали).

Рис. 3.11

Направление смещения нейтрали зависит от последовательности фаз системы и характера нагрузки.

Поэтому нейтральный провод необходим для того, чтобы:

  • выравнивать фазные напряжения приемника при несимметричной нагрузке;

  • подключать к трехфазной цепи однофазные приемники с номинальным напряжением в   раз меньше номинального линейного напряжения сети.

Следует иметь в виду, что в цепь нейтрального провода нельзя ставить предохранитель, так как перегорание предохранителя приведет к разрыву нейтрального провода и появлению значительных перенапряжений на фазах нагрузки.