Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Нейрофизиология - Алейникова Т.В. - Физиология....doc
Скачиваний:
47
Добавлен:
23.04.2019
Размер:
16.35 Mб
Скачать

2.1. Физиология нейрона.

Основными элементами нейронной системы являют­ся нервные клетки. Подтверждение клеточной тео­рии строения нервной системы было получено с помо­щью электронной микроскопии, показавшей, что мем­брана нервной клетки напоминает основную мембрану других клеток. Она представляется сплошной на всем протяжении поверхности нервной клетки и отделяет ее от других клеток. Каждая нервная клетка являет­ся анатомической, генетической и метаболической еди­ницей так же, как и клетки других тканей организ­ма. Понятие, что одиночная нервная клетка служит, основной функциональной единицей, сменилось пред­ставлением о том, что такой функциональной едини­цей является ансамбль тесно связанных друг с дру­гом нейронов. Нервная система состоит из популя­ций таких единиц, которые организованы в функци­ональные объединения разной степени сложности. В нервной системе человека содержится около 100 млрд нервных клеток. Поскольку каждая нервная клетка функционально связана с тысячами других нейронов, то количество возможных вариантов таких связей близко к бесконечности. Нервную клетку следует рас­сматривать как один из уровней организации нерв-: ной системы, связующих молекулярный, синаптичее-кие, субклеточные уровни с надклеточными уровнями локальных нейронных сетей, нервных центров и фун­кциональных систем мозга, организующих поведение.

Нервные клетки выполняют ряд общих неспецифи­ческих функций, направленных на поддержание соб­ственных процессов организации. Это обмен вещества­ми с окружающей средой, образование и расходование энергии, синтез белков и др. Кроме того, нервные клет­ки выполняют свойственные только им специфичес­кие функции по восприятию, переработке и хранению информации. Нейроны способны воспринимать инфор­мацию, перерабатывать (кодировать) ее, быстро пере­давать информацию по конкретным путям, организо­вывать взаимодействие с другими нервными клетка­ми, хранить информацию и генерировать ее. Для вы­полнения этих функций нейроны имеют полярную организацию с разделением входов и выходов и содер­жат ряд структурно-функциональных частей.

Тело нейрона, которое связано с отростками, яв­ляется центральной частью нейрона и обеспечивает питанием остальные части клетки. Тело покрыто сло­истой мембраной, которая представляет собой два слоя липидов с противоположной ориентацией, образую­щих матрикс, в который заключены белки. Часть мем­бранных белков является гликопротеинами с полиса-харидными цепочками, выступающими над наруж­ной поверхностью мембраны. Они вместе с углевода­ми образуют гликокаликс — тонкий слой на поверх­ности клеточной мембраны, который заполняет меж­клеточные щели и способствует созданию связей меж­ду нейронами, распознаванию клеток, регуляции диф­фузии через мембрану, обмену с внешней средой. Тело нейрона имеет ядро или ядра, содержащие генети­ческий материал (рис. 2.1),

Ядро регулирует синтез белков во всей клетке и контролирует дифференцирование молодых нервных клеток. При усилении активности нейрона увеличи­вается площадь ядра и активизируются ядерно-

Рис 2.1. Схемы структурно-функциональных частей нейрона. Нейрон, показанный в центре, окружен схемами, иллюстриру­ющими ультраструктуру его частей: ЭР — эндоплазмати-ческий ретикулюм; ШЭР шероховатый эндоплазматичес-кий ретикулюм; ТГ ~ тельце Гольджи; СН — субстанция Ниссля; МТ микротрубочка; НФ пейрофиламент; М — митохондрия; РНЧ -- рибонуклеопротеиновые частицы; ША — шипиковый аппарат; П — пузырьки (Шеперд, 1987)

плазменные отношения. В цитоплазме тела нейрона содержится большое количество рибосом. Одни рибо­сомы располагаются свободно в цитоплазме по одной или образуют скопления -- «розетки», где синтези­руются белки, которые остаются в клетке. Другие

рибосомы прикрепляются к эидонлазматическому

ретикулюму, представляющему внутреннюю систему мембран, канальцев, пузырьков. Прикрепленные к мембранам рибосомы синтезируют белки, которые потом транспортируются из клетки. Скопления эн-доплазматического ретикулюма со встроенными в него рибосомами составляют характерное для тел нейро­нов образование — субстанцию Ниссля. Скопления гладкого эндонлазматического ретикулюма, в кото­рые не встроены рибосомы, составляют сетчатый аи-парат Голъджи; предполагается, что он имеет значе­ние для секреции неиромедиаторов и нейромодулято-ров. Лизосомы представляют собой заключенные в мембраны скопления различных гидролитических ферментов, расщепляющих множество внутри- и вне-клеточ ноле каля зова иных веществ и участвующих в процессах фагоцитоза и экзоцитоза. Важными орга-неллами нервных клеток являются митохондрии — основные структуры энергообразования. На внутрен­ней мембране митохондрии содержатся все ферменты цикла лимонной кислоты — важнейшего звена аэроб­ного пути расщепления глюкозы, который в десятки раз эффективней анаэробного пути. Ферменты цепи переноса электронов создают энергию, которая идет на образование АТФ и АДФ. Важной особенностью анергетического обмена нервных клеток является от­сутствие собственных углеводов в форме гликогена. Нейроны позвоночных используют глюкозу, беспозво­ночных — трегалозу. Высокий уровень энерготрат нервных клеток и отсутствие собственных запасов уг­леводов делают их особо чувствительными к наруше­нию поступления крови, в которой содержится глю­коза и кислород, необходимые для аэробного энерго­образования на митохондриях. В нервных клетках со­держатся также микротрубочкк, нейрофиламенты и

микрофиламенты, различающиеся диаметром. Мжк-ротрубочки (диаметр 300 нм) идут от тела нервной клетки в аксон и дендриты и представляют собой внут­риклеточную транспортную систему. Нейрофиламен­ты (диаметр 100 нм) встречаются только в нервных клетках, особенно в крупных аксонах» и тоже состав­ляют часть ее транспортной системы. Микрофиламен-ты (диаметр 50 нм) хорошо выражены в растущих отростках нервных клеток, они участвуют в некото­рых видах межнейронных соединений.

Дендриты представляют собой древовидно»ветвя­щиеся отростки нейрона, его главное рецептивное поле, обеспечивающее сбор информации, которая по­ступает через синапсы от других нейронов или прямо из среды. При удалении от тела происходит ветвле­ние дендритов: число дендритных ветвей увеличива­ется, а диаметр их сужается. На поверхности дендри­тов многих нейронов (пирамидные нейроны коры„ клетки Пуркинье мозжечка и др.) имеются шипики. Шипиковый аппарат является составной частью сис­темы канальцев дендрита: в дендритах содержатся микротрубочки, нейрофиламенты, сетчатый аппарат Гольджи и рибосомы. Функциональное созревание и начало активной деятельности нервных клеток совпа­дает с появлением шипиков; продолжи тельное пре­кращение поступления информации к нейрону ведет к рассасыванию шшшков. Наличие шипиков увели­чивает воспринимающую поверхность дендритов; так, площадь дендритов клеток Пуркжнье мозжечка око­ло 250 000 мкм2. Мембрана дендритов по своим свой­ствам отличается от мембраны других участков не­рвной клетки и не способна к быстрому и надежному проведению возбуждения.

Аксон представляет собой одиночный,, обычно длин­ный выходной отросток нейрона, служащий для быс-

трого проведения возбуждения. (В структуру аксона входят начальный сегмент, аксональное волокно и телодендрий.) Аксональное волокно отличается посто­янством диаметра по всей длине. В конце он может ветвиться на большое (до 1000) количество веточек. Аксоплазма содержит множество микротрубочек и нейрофиламентов, с помощью которых осуществля­ется аксональныи транспорт химических веществ от тела к окончаниям (ортоградный) и от окончаний к телу нейрона (ретроградный). Существует быстрый аксональныи транспорт со скоростью сотен миллимет­ров в сутки и медленный транспорт со скоростью не­сколько миллиметров в сутки. По аксону транспор­тируются вещества, необходимые для синаптической передачи, пептиды, продукты нейросекреции. В за­висимости от скорости проведения возбуждения раз­личают несколько типов аксонов, отличающихся ди­аметром, наличием или отсутствием миелиновой обо­лочки и другими характеристиками (табл. 2.1).

Таблица 2.1 Характеристика разных типов аксонов

Тип аксона

Скорость,

м/с

Диаметр,

мкм

Наличие миелиновой

оболочки

А а

420-70

22-12

Есть

Ар

70-40

12-8

»

Ау

40-15

8-4

»

А8

15-6

4-1

»

В

18-3

3-1

»

С

3-0,5

2-0,5

Нет

Начальный сегмент аксона нейронов является тригерной зоной -- местом первоначальной генера­ции возбуждения. Этот участок нервной клетки на­чинается от аксонного холмика и, воронкообразно

сужаясь, переходит в начальный участок аксона, не покрытый миелиновой оболочкой. Поскольку этот участок мембраны нейрона является наиболее возбу­димым, то здесь обычно первоначально и возникает возбуждение, которое затем распространяется по ак­сону и телу нейрона. Таких запускающих возбужде­ние участков может быть несколько. Начальный сег­мент аксона имеет важное значение для интегратив-ной деятельности нервной клетки. Телодендрий пред­ставляет собой часть нервной клетки, которая осу­ществляет соединение с другими нейронами путем синаптических контактов. Это конечные разветвле­ния — терминали аксона, которые не покрыты мие­линовой оболочкой и заканчиваются утолщениями различной формы (булавы, кольца/пуговки, чаши и др.), которые входят составной частью в синапс. В утолщениях локализовано значительное количество пузырьков, расположенных свободно или встроенных в пресинаптические мембраны. Поскольку термина­ли аксона очень тонкие и не покрыты миелином, то скорость возбуждения в них значительно меньше, чем в аксонах.

Взаимодействие частей нервных клеток обеспечи­вает реализацию их функций с помощью химических и электрических процессов. Химические процессы в нервных клетках отличаются высокой интенсивнос­тью, сложностью и многообразием. Наряду с уже от­меченными особенностями энергетического обмена, в нервных клетках происходит синтез белков (в том числе специфических) широкого спектра, функцио­нально активных пептидов, медиаторов и модулято­ров синаптических процессов, продуктов нейросекре­ции. Электрические процессы имеют важнейшее зна­чение для информационной деятельности нервных клеток и должны быть рассмотрены отдельно.

2.2. Электрические процессы в нейронах

Электрические процессы в нервных клетках вклю­чают в себя наличие постоянного потенциала покоя и медленных и быстрых изменений этого потенциала при возбуждении. Потенциал покоя является мемб­ранным потенциалом нервной клетки и обусловлен неравномерным распределением электролитов по обе стороны клеточной мембраны. Внутри нервной клет­ки содержится большое количество органических ани­онов и катионов; в наружной среде катионов К+ при* мерно в 40 раз меньше, но высока концентрация ка­тионов Ка+, анионов С1~. Крупные органические ани­оны не проникают через мембрану, а ионы К+, легко проникающие через мембрану, по закону диффузии перемещаются из области более высокой концентра­ции наружу. Это приводит к избытку положитель­ных зарядов на наружной поверхности и преоблада­нию отрицательных зарядов на внутренней поверх­ности мембраны. Внутренняя поверхность мембраны заряжается отрицательно по отношению к наружной, при этом возникает электрическая сила, обеспечива­ющая обратное движение части ионов К* внутрь клет­ки, и устанавливается определенное равновесие, при котором суммарный поток ионов через мембрану бу­дет равен нулю. Разность потенциалов между двумя сторонами мембраны при таком равновесии опреде­ляет величину мембранного потенциала. Наряду с по­токами ионов Кь, являющихся основными фактора­ми мембранного потенциала, через мембрану нервной клетки в значительно меньшем количестве движутся ионы Ма+, Са++, С1 . Они проходят через двойной ли-пидный слой мембраны по своим специальным для каждого вида ионов каналам, открывание и закрыва­ние которых связано с изменением величины мемб­ранного потенциала.

Влияние разницы концентраций и проницаемости основных ионов, участвующих в образовании мемб­ранного потенциала, выражено в уравнении постоян­ного поля:

ЕМ = ………………………………….

Для создания разницы ионных концентраций и вос­полнения потерь ионов в мембране нервной клетки действует система мембранного насоса, осуществляю­щего активный транспорт ионов против градиента кон­центрации и использующего для этого энергию ней­ронного метаболизма. Наиболее существен натрий-ка­лиевый насос, возвращающий К+ внутрь клетки и вы­водящий из нее Ма4. На внутренней стороне мембраны Ма+ соединяется с молекулой переносчика; образован­ный комплекс ион-переносчик проходит через мемб­рану; на наружной поверхности комплекс распадает­ся, высвобождая ион N3^ и соединяясь с ионом К+, транспортирует его внутрь. Источником энергии для работы насоса служит расщепление АТФ ферментом АТФ-азой, выполняющим функцию переносчика.

Поскольку соотношение количества переносимых насосом Ма+ и К4 неодинаково, то насос не только под­держивает разницу ионных концентраций по обе сто­роны мембраны, но и участвует в формировании по­тенциала покоя, является электрогенным. Таким об­разом, мембранный потенциал создается в результате работы пассивных и активных механизмов, соотно­шение которых у разных нейронов неодинаково. По­этому у различных нейронов величина мембранного потенциала колеблется от -80 до -40 мв, она в значи­тельной степени зависит от особенностей его дея-

тельности и функционального состояния. При умень­шении величины мембранного потенциала покоя (де­поляризации) возбудимость возрастает, при увеличе­нии мембранного потенциала (гиперполяризации) воз­будимость снижается. Возбуждение нервной клетки связано с развитием потенциала действия. Потенци­ал действия, или нервный импульс, представляет со­бой кратковременное, длящееся миллисекунды изменение мембранного потенциала, при котором уменьшается его величина, доходит до нуля и затем потенциал меняет знак. В момент пика потенциала действия мембрана становится заряженной внутри не отрицательно, а положительно (4—50 мв); амплитуда потенциала действия составляет 110—130 мв.

Перезарядка мембраны при возбуждении происхо­дит из-за быстрого и значительного повышения мем­бранной проницаемости для N3% вследствие чего боль­шое количество ионов Ыа+ проникает с наружной на внутреннюю сторону мембраны и создает здесь избы­ток положительных зарядов (рис. 2.2).

Рис. 2.2. Происхождение потенциала действия: а связи между деполяризацией мембраны, увеличением натриевой про­ницаемости и входящим током Nа*; б кривые изменения, ионных проницаемостей в процессе формирования потенциа­ла действия (Щеперд, 1987)

Восходящая фаза потенциала действия обусловлена избирательным повышением проницаемости мембра­ны для Ма+. Раскрытие натриевых каналов связано с уменьшением мембранного потенциала и происходит со все возрастающей интенсивностью — лавинообраз­но, так как переход Ма+ на внутреннюю поверхность усиливает деполяризацию и приводит к раскрытию новых натриевых каналов. Нисходящая фаза потен­циала действия связана с инактивацией натриевых каналов и повышением проницаемости для К+, так как калиевые каналы раскрываются позже натриевых.

Усиленный поток 1С наружу приводит к восста­новлению мембранного потенциала до величины по­тенциала покоя. В телах многих нейронов потенци­ал действия связан и с входящим током Са++, отли­чающимся большей продолжительностью. Вход Са++ внутрь клетки во время потенциала действия явля­ется эффективным механизмом повышения внутри­клеточной концентрации свободного Са++, который запускает или участвует в работе многих метаболи­ческих процессов. Во время возбуждения значитель­но усиливается работа натрий-калиевого насоса, ак­тивируемая повышением концентрации Ка+ на внут­ренней поверхности мембраны. Его деятельность спо­собствует восстановлению потенциала покоя. Потен­циал действия обладает порогом, при котором депо­ляризация достигает критического уровня и раскры­ваются все натриевые каналы мембраны. При под-пороговых воздействиях раскрывается лишь часть на­триевых каналов, перезарядка мембраны не проис­ходит, возникает местное возбуждение. Вследствие того, что при потенциале действия раскрываются все натриевые каналы, его амплитуда постоянна и не за­висит от силы раздражения; с этим связана и не­восприимчивость к новому раздражению. Потенциа-

лы действия способны быстро и надежно распрост­раняться по мембране тела и аксона нервной клет­ки. Способность к распространению возбуждения свя­зана с тем, что во время потенциала действия проис­ходит изменение знака заряда в возбужденном учас­тке мембраны. Между ним и невозбужденными со­седними участками мембраны возникают локальные электрические токи, под действием которых проис­ходит деполяризация новых соседних участков, что приводит к формированию в них потенциала дей­ствия. Далее развиваются локальные токи между новым участком, охваченным возбуждением, и сле­дующими невозбужденными участками; и так воз­буждение активно распространяется вдоль всей не-миелинизированной мембраны. Чем больше диаметр волокна, тем скорость распространения возбуждения выше (см. табл. 2.1).

У позвоночных большинство аксонов покрыто ми-елиновой оболочкой, периодически прерывающейся на перехватах Ранвье. В перехватах существует вы­сокая плотность потенциалзависимых натриевых ка­налов (12 000 на 1 мм2), здесь генерируется потенци­ал действия, а на участках между перехватами воз­можно электротоническое формирование локальных токов, вызывающих потенциал действия лишь на сле­дующем перехвате. Благодаря этому происходит скач­кообразное (сальтаторное) распространение потенци­ала действия со значительно большей скоростью, чем по немиелинизированной мембране. Разновидность ак­тивного проведения возбуждения выявлена и на оп­ределенных участках дендритов некоторых нейронов.