Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
тема№6.doc
Скачиваний:
10
Добавлен:
07.08.2019
Размер:
10.34 Mб
Скачать

Медицинские средства защиты

Специфическими противоядиями ботулотоксина являются противо-ботулинические сыворотки (А, В, Е). При подозрении на поражение ток­сином возможно профилактическое внутримышечное введение сыворо­ток по 1000—2000 ME каждого типа с последующим наблюдением за пострадавшим в течение 10—12 дней. Решение о назначении сывороток достаточно сложно и требует участия квалифицированного специалиста, поскольку, с одной стороны, эти лекарственные средства не всегда ока­зываются эффективными (иные серологические типы токсина, быстрое необратимое взаимодействие яда с нервными окончаниями), а с другой — достаточно высока вероятность осложнений, связанных с их применени­ем (анафилаксия, сывороточная болезнь).

В эксперименте in vitro нервную передачу в синапсах, нарушенную бо-тулотоксином, временно нормализует 4-аминопиридин. Полагают, что действие вещества обусловлено его способностью облегчать транспорт ионов кальция через мембрану нервных окончаний и преодолевать тем самым блок Са2+-зависимого экзоцитоза ацетилхолина. При введении летальной дозы токсина экспериментальному животному последующее назначение 4-аминопиридина отчасти восстанавливает двигательную ак­тивность животного на 1—2 ч. К сожалению, из-за высокой токсичности и кратковременности эффекта 4-аминопиридин не может рассматриваться как эффективное противоядие. Табельные средства медицинской за­щиты отсутствуют.

При появлении признаков угнетения дыхания необходимо преду­смотреть возможность перевода пострадавшего на искусственную венти­ляцию легких.

Блокаторы Na+-ионных каналов возбудимых мембран

Сакситоксин. Тетродотоксин

В строгом смысле слова вещества этой группы не относятся к «чис­тым» нейротоксикантам, поскольку, блокируя ионные каналы, действу­ют на возбудимые мембраны всех типов клеток организма: нервных, мы­шечных, железистых. Порой не возможно решить, поражение какой из структур является ведущим в патогенезе острой интоксикации. Тем не менее внешние признаки тяжелого поражения очень напоминают дейст­вие миорелаксантов, традиционно относимых к группе нейротоксикан-тов. И поэтому, хотя механизм действия веществ иной, представляется целесообразным рассмотреть их свойства в данном разделе. Достаточно хорошо изученными представителями группы являются сакситоксин и тетродотоксин, признаки поражения которыми, по сути, одинаковы. Бо­евое применение токсинов маловероятно, однако эти вещества рассмат­ривались в качестве возможных диверсионных средств (В. В. Мясников, 1989; Франке, 1973). В 60—70-х гг. XX в. свойства токсинов активно изу­чались военным ведомством США.

Физико-химические свойства. Токсичность

Сакситоксин. В 1957 г. Шантцем с соавт. были изучены свойства так называемого «паралитического яда моллюсков» — одного из наиболее токсичных веществ небелковой природы. По названию морского моллю­ска, из ткани которого токсикант выделили (Saxidomus), вещество полу­чило название сакситоксин. Позже было установлено, что в организме животных сакситоксин не синтезируется, а поступает туда с одноклеточ­ными (жгутиковые) вида Gonyaulax catenella, которыми моллюски пита­ются. Количество вырабатываемого простейшими вещества колеблется в очень широких пределах и зависит от географического региона, времени года и других условий.

В случае массового размножения Gonyaulax целый ряд моллюсков по­глощают их в большом количестве и концентрируют в своих тканях ток­син, который для них практически безвреден. Становясь при этом ядови­тыми, моллюски, съедобные для человека в обычных условиях, при использовании в пищу, вызывают случаи массового отравления людей.

Сине-зеленые водоросли пресноводных водоемов также синтезируют сакситоксин. Наблюдались случаи отравления скота водой, зараженной этими водорослями.

Сакситоксин (МВ-372) — аморфный, хорошо растворимый в воде, спирте, метаноле, ацетоне порошок. Вещество устойчиво в водных рас­творах. Химическое строение представлено на рис. 61. Молекулы сакси-токсина, выделенные из разных источников, не полностью идентичны.

Расчетная смертельная доза сакситоксина для человека составляет по разным данным 0,004—0,01 мг/кг. Токсичность для мышей при внутри-брюшинном способе введения — около 0,009 мг/кг (с регистрацией гибе­ли в течение 30 мин). При назначении вещества через рот смертельная доза — 0,25 мг/кг.

Тетродотоксин обнаружен в тканях целого ряда живых существ, среди которых рыбы (более 70 видов, в том числе семейства Tetrodontidae — четы-рехзубообразные), лягушки (3 вида), моллюски (1 вид). В Японии, где пред­ставитель четырехзубообразных, рыба Фугу, является деликатесом, десятки людей ежегодно отравляются в результате неумелого приготовления блюда.

Вещество выделено в чистом виде, структура его изучена (рис. 62). Это — бесцветный порошок, хорошо растворимый в воде. Раствор стаби­лен при комнатной температуре. Молекулярная масса — 319,3.

Токсичность вещества для белых мышей при внутрибрюшинном спосо­бе введения около 0,01 мг/кг массы. Доза в 0,005 мг/кг (подкожно) вызывает у собак рвоту и нарушение дыхания, а дозы более 0,006 мг/кг в течение часа приводят к гибели в результате прекращения дыхания и асфиксии.

Токсикокинетика

Через неповрежденную кожу вещества не проникают. Опасность пред­ставляет попадание токсинов на раневые поверхности, а также (прежде всего) потребление воды и пищи, зараженной ядами. Вещества быстро абсорбиру­ются в кишечнике и столь же быстро выводятся из организма с мочой. Дета­льно токсикокинетика токсинов не изучена. Дискуссионным остается вопрос о способности веществ проникать через гематоэнцефалический барьер.

Основные проявления интоксикации

Независимо от способа поступления в организм симптомы отравле­ния практически одинаковы.

Спустя 10-45 мин появляются тошнота, рвота, боли в животе, понос. Ранними признаками поражения являются парестезии в области рта, губ, языка, десен, распространяющиеся на область шеи, покалывание, ощу­щение жжения кожи конечностей. Позже развиваются бледность кожных покровов, беспокойство, общая слабость, онемение конечностей, возни­кает ощущение невесомости тела. Зрачок сначала сужен, затем расширя­ется. В тяжелых случаях взгляд фиксирован, зрачковый и корнеальный рефлексы отсутствуют, появляются признаки бульбарных нарушений: за­труднение глотания, речи (иногда — афония), нарастают брадикардия и гипотензия, отмечаются гиперсаливация, профузная потливость, пони­жение температуры тела. Дыхание учащается, становится поверхност­ным, развивается цианоз губ и конечностей.

Двигательные расстройства проявляются все отчетливее: появляются подергивания отдельных групп мышц, тремор, координация движений на­рушается. Начавшись в области конечностей, постепенно развивающийся паралич распространяется на другие мышечные группы, охватывая все бо­льшие группы мышц. Сознание, как правило, сохраняется весь период ин­токсикации. Смерть наступает от паралича дыхательной мускулатуры и ас­фиксии в течение 6—24 ч от начала интоксикации. Если больной выжива­ет, в течение последующих суток наступает практически полная нормали­зация состояния, в большинстве случаев, без отдаленных последствий.

Помимо типичной паралитической формы выделяют также гаст-ро-интестинальный и аллергический варианты течения отравления. Пер­вый вариант проявляется признаками общего недомогания, чувством жажды, саливацией, болями в животе, тошнотой, рвотой, поносом.

Аллергическая форма отравления развивается у отдельных лиц с по­вышенной чувствительностью к токсинам. Характерно появление экзан­тем (эритематозная форма). Иногда на коже и слизистых оболочках обра­зуются пузыри.

Механизм токсического действия

Тетродотоксин, как и сакситоксин, оказывает избирательное действие на возбудимые мембраны нервов и мышц. Как известно, градиент концен­трации ионов между внутренней и внешней средой клетки формирует по­тенциал покоя возбудимой мембраны, равный примерно 90 мВ.

Распределение ионов внутри и вне возбудимых клеток, мМ/л

(по Katz, 1971)

Ионы

Мышечная клетка

Нервная клетка

снаружи

внутри

снаружи

внутри

Na+

120

9,2

460

50

К*

2,5

140

10

400

ci-

120

3-4

540

40-100

Градиенты концентраций калия и хлора примерно уравновешивают друг друга. Поэтому проницаемость мембраны для этих ионов хотя и ограничена, но относительно высока. Проницаемость натриевых каналов в покое ничтожно мала. Более того, Na+ постоянно «выкачивается» за пределы нейрона с помощью энергозависимых механизмов против высо­кого электрохимического градиента. Таким образом, потенциал покоя представляет собой не что иное, как готовый к использованию источник накопленной энергии, необходимой для генерации сигнала (потенциала действия). Если возбудимая мембрана деполяризуется примерно на 15 мВ, электровозбудимые натриевые каналы открываются, проницаемость их для ионов резко возрастает, Na+устремляется в клетку, разница потенци­алов по обе стороны мембраны падает, деполяризация мембраны еще бо­лее усиливается, формируется потенциал действия и возбуждение пере­дается по нервному (или мышечному) волокну. Затем в течение около 0,8 мс потенциал на мембране возвращается к исходному уровню, глав­ным образом за счет выхода ионов калия из клетки. Усиление проницае­мости для К+ необходимо для полной реполяризации мембраны и восста­новления исходного потенциала покоя. При этом восстанавливается и исходная проницаемость мембраны для натрия.

Тетродотоксин и сакситоксин полностью блокируют проникновение ионов Na+ по ионным каналам возбудимых мембран внутрь клеток. При этом становится невозможным формирование потенциала действия возбу­димых мембран — нарушается проведение нервных импульсов по нейро­нам, сокращение миоцитов. В эксперименте показано, что вещества дейст­вуют только при экстрацеллюлярной аппликации. В соответствии с расчета­ми одна молекула токсинов полностью блокирует один ионный канал. По­лагают, что взаимодействие токсикантов с белковыми молекулами, форми­рующими ионный канал, осуществляется за счет группы гуанидина, содер­жащейся в структуре как сакси-, так и тетродотоксина. Взаимодействие ток­синов с белками ионных каналов обратимо. In vitro яды могут быть удалены с поверхности возбудимой мембраны простым отмыванием биопрепарата.

Исчерпывающих данных о причинах развивающихся эффектов нет. Так, до конца не определено, возбудимые мембраны каких структур, нер­вных клеток (ЦНС, периферии) или миоцитов, являются более чувствите­льными к действию токсинов. Так, по мнению одних исследователей, остановка дыхания является следствием действия токсинов на нейроны дыхательного центра, другие полагают, что основным является нарушение проведения нервного импульса по дыхательным нервам или возбудимости дыхательных мышц. Вероятно, более справедливо последнее предположе­ние, поскольку электровозбудимость диафрагмы блокируется меньшими дозами токсикантов, чем проведение нервного импульса по диафрагмаль-ному нерву. Кроме того, в опытах на анестезированных кошках показано, что при введении вещества в смертельной дозе проведение нервных импу­льсов по диафрагмальному нерву не прекращается даже тогда, когда элект-ромиограмма лиафрагмальной мышцы уже безмолвствует.

Развивающееся снижение артериального давления также связывают как с блокадой проведения нервных импульсов по симпатическим нер­вным волокнам, так и с параличом гладкомышечных клеток сосудистой стенки. Сердечная мышца вовлекается в процесс при введении токсикан­та лабораторным животным в дозе 0,007 мг/кг.

Нарушение чувствительности (парестезии с последующим онемени­ем) — следствие поражения возбудимых мембран чувствительных ней­ронов.

Многие центральные эффекты, такие как атаксия, головокружение, нарушение речи и т. д., могут быть связаны с действием вещества непо­средственно на нейроны ЦНС.

Мероприятия медицинской защиты

Специальные санитарно-гигиенические мероприятия:

• участие медицинской службы в проведении химической развед­ки в районе расположения войск; проведение экспертизы воды и продовольствия на зараженность ОВТВ;

• запрет на использование воды и продовольствия из непроверен­ных источников.

Специальные лечебные мероприятия:

• своевременное выявление пораженных;

• применение средств патогенетической и симптоматической те­рапии состояний, угрожающих жизни, здоровью, дееспособно­сти, в ходе оказания первой (само- и взаимопомощь), доврачеб­ной и первой врачебной (элементы) помощи пострадавшим;

• подготовка и проведение эвакуации.

Медицинские средства защиты

В порядке оказания доврачебной и первой врачебной помощи у по­страдавшего необходимо вызвать рвоту, провести зондовое промывание желудка. Специфических средств профилактики и терапии интоксикации нет. Поскольку при тяжелых формах поражения единственным надежным способом сохранения жизни является перевод пострадавшего на искусст­венную вентиляцию легких, необходимо принять меры к скорейшей эва­куации пострадавших в лечебные учреждения. В случае сохранения жизни прогноз благоприятный: выздоровление бывает быстрым и полным.

Отравляющие и высокотоксичные вещества психодислептического действия

Психодислептическим называется токсическое действие химических веществ, сопровождающееся нарушением процессов восприятия, эмоций, памяти, обу­чения, мышления и формированием состояния, характеризующегося неадек­ватными поведенческими реакциями личности на внешние раздражители.

Научное изучение психоактивных веществ (влияющих на психиче­ские процессы) началось лишь во второй половине XX в., хотя действие некоторых из них знакомо человечеству уже тысячелетия. В настоящее время известны сотни соединений с подобными свойствами, причем многие — широко используются в клинической практике, а некоторые — испытывались на предмет применения с военными целями как боевые отравляющие вещества.

Способность вызывать психодислептический эффект у разных психо­активных веществ выражена неодинаково. Так, в рекомендованных вра­чом дозах большинство психотропных лекарственных препаратов (ней­ролептики, антидепрессанты, психостимуляторы, наркотические анальге­тики и т. д.) угнетают или активируют (в зависимости от свойств) процес­сы, лежащие в основе высшей нервной деятельности, сохраняя в целом адекватное отношение личности к окружающей действительности. Толь­ко в относительно больших дозах они в той или иной степени могут из­вращать процессы восприятия, эмоций, памяти и т. д.

Однако известны вещества, для которых психодислептический эф­фект является основным в профиле их биологической активности. Коли­чество такого вещества, делающее человека полностью недееспособным, в сотни — тысячи раз меньше того, в котором это же вещество угнетает сознание или вызывает соматические расстройства. Такие вещества ино­гда называют психодислептиками, психотомиметиками, психогениками, психоделиками, подчеркивая их особую способность извращать функции высшей нервной деятельности.

В табл. 53 представлена классификация наиболее изученных соеди­нений.

Строение некоторых веществ, относящихся к этой группе, представ­лено на рис. 63.

Признаки тяжелого поражения психодислептиками достаточно одно­типны. Напротив, картина легкого и средней степени тяжести отравления характеризуется значительной полиморфностью и даже при воздействии одного и того же соединения развивающиеся эффекты существенно зави­сят от индивидуальных личностных особенностей человека и ситуации, на фоне которой произошло поражение. Тем не менее наблюдения показы­вают, что можно выделить несколько типичных вариантов течения инток­сикации. Так, при отравлениях некоторыми веществами доминирует изме­нение эмоционального статуса (эйфория и т. д.); другие вещества преиму­щественно вызывают нарушения процессов восприятия (иллюзии, галлю­цинации и т. д.) с умеренным извращением ассоциативных процессов; третьи — формируют глубокое извращение психической активности, за­трагивающее все ее стороны (делирий). Эти особенности обусловлены прежде всего различными механизмами действия веществ на центральную нервную систему. В этой связи есть основания выделить группы токсикан­тов в соответствии с особенностями формируемых ими токсических про­цессов:

1. Эйфориогены: Д-тетрагидроканнабинол, суфентанил, клонитазен и др.

2. Галлюциногены (иллюзиогены): ДЛК, псилоцин, псилоцибин, бу-фотенин, мескалин и др.

3. Делириогены: BZ, скополамин, дитран, фенциклидин и др.

Химическая классификация психодислептиков

Группа соединений

Представители

Производные триптамина

диметилтриптамин буфотенин псилоцин псилоцибин

диэтиламид лизергиновой кислоты (ДЛК) гармин

Производные фенилалкиламинов

мескалин

2,5-диметокси-4-метиламфетамин

2,5-диметокси-4-этиламфетамин

триметоксифенизопропиламин

Пиперидилгликоляты

атропин скополамин

хинуклединилбензилаты

Производные фенилпиперидина и бензимидазола

фентанил

суфентанил

этонитазен

Разные

фенциклидин (сернил) Д-тетрагидроканнабинол

Поскольку препараты первой группы вызывают отчетливое психодис-лептическое действие лишь в дозах, близких к тем, в которых отмечается угнетение сознание, нарушение двигательной активности, а иногда и уг­нетение дыхательного и сосудо-двигательного центров, для военной ме­дицины интерес представляют психодислептики только второй и третьей групп. Некоторые из них ранее предполагали использовать на поле боя в качестве отравляющих веществ, временно выводящих из строя личный состав противника (психотомиметические ОВ). С этой целью в различное время изучали такие вещества, как NjN-диметилтриптамин, буфотенин, мескалин, диэтиламид лизергиновой кислоты (ДЛК), фенил-циклогек-сил-пиперидин (фенциклидин), 3-хинуклидинил-бензилат (BZ) и т. д. Эти вещества также можно рассматривать как потенциальные диверси­онные яды.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]