Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
По курсовику.docx
Скачиваний:
3
Добавлен:
08.08.2019
Размер:
1 Mб
Скачать

1. Анализ технического задания. Основные этапы проектирования

В качестве комплексной курсовой работы (проекта) в данных методических указаниях предложена разработка электрических эквивалентных и принципиальных схем электрической цепи, содержащей электрический фильтр и усилитель, а также анализ спектра входного сигнала генератора импульсов и анализ «прохождения» входного сигнала к выходу устройства. Эти задачи являются важными, практически полезными, так как разрабатываются и анализируются широко применяемые в радиотехнике функциональные узлы.

Схема электрическая структурная всего устройства, для которого необходимо провести расчеты, приведена на рисунке 1. Варианты заданий для отдельных разделов расчетов приведены в приложениях Б, В, Г. Номера вариантов заданий соответствуют номерам студентов в списке группы, либо номер варианта формируется более сложным образом. При необходимости студенты могут самостоятельно задать дополнительные требования к проектированию, например, массогабаритные требования, требования к фазочастотным характеристикам и другие.

Рис. 1

На рисунке 1 обозначены комплексные действующие значения входных и выходных электрических напряжений гармонической формы.

При курсовом проектировании необходимо решить следующие задачи:

а) синтезировать (разработать) любым методом схему электрическую эквивалентную, а затем – схему электрическую принципиальную на любых радиоэлементах. Провести расчеты ослабления и коэффициента передачи по напряжению, проиллюстрировать расчеты графиками;

б) разработать схему электрическую принципиальную усилителя напряжения на любых радиоэлементах. Провести расчеты усилителя по постоянному току, проанализировать параметры усилителя в режиме малых переменных сигналов;

в) рассчитать любым методом спектр сложного периодического сигнала, подаваемого с генератора импульсов на вход фильтра, проиллюстрировать расчеты графиками амплитудного и фазового спектра входного сигнала;

г) проанализировать прохождение электрического напряжения от генератора импульсов через электрический фильтр и усилитель, проиллюстрировать анализ графиками амплитудного и фазового спектра выходного сигнала.

В этой последовательности рекомендуется проводить необходимые расчеты, а затем оформить их в виде разделов пояснительной записки. Расчеты необходимо выполнять с точностью не менее 5 %. Это следует учитывать при различных округлениях, приближенном анализе спектра сигнала, при выборе стандартных радиоэлементов, близких по номиналу к расчетным значениям.

Далее рассмотрены общие принципы решения поставленных задач, методики расчетов и расчетные формулы.

2. Основные принципы и методы проектирования электрических фильтров

2.1. Основные принципы проектирования фильтров

2.1.1. Основные требования к проектированию

Электрические фильтры – это линейные или квазилинейные электрические цепи, имеющие частотно-зависимые комплексные коэффициенты передачи полной мощности . При этом частотно-зависимым является также хотя бы один из двух коэффициентов передачи: по напряжению или по току . Вместо безразмерных коэффициентов передачи при анализе и синтезе фильтров широко применяется ослабление ( ), измеряемое в децибелах:

, (1)

где , , – модули коэффициентов передачи (в формуле (1) применяется десятичный логарифм).

Частотный диапазон, в котором ослабление ( ) приближается к нулю, а коэффициент передачи полной мощности ( ) приближается к единице, называется полосой пропускания (ПП). И наоборот, в частотном диапазоне, где коэффициент передачи мощности близок к нулю, а ослабление составляет несколько десятков децибел, находится полоса задерживания (ПЗ). Полосу задерживания в специальной литературе по электрическим фильтрам также называют полосой ослабления или полосой затухания. Между ПП и ПЗ находится переходная полоса частот. По расположению полосы пропускания в частотном диапазоне электрические фильтры относят к следующим типам:

ФНЧ – фильтр нижних частот, полоса пропускания находится на нижних частотах;

ФВЧ – фильтр верхних частот, полоса пропускания находится на верхних частотах;

ПФ – полосовой фильтр, полоса пропускания находится в относительно узком частотном диапазоне;

РФ – режекторный фильтр, полоса задерживания находится в сравнительно узком частотном диапазоне.

Реальный электрический фильтр может быть выполнен на различных радиокомпонентах: катушках индуктивности и конденсаторах, избирательных усилительных устройствах, избирательных пьезоэлектрических и электромеханических устройствах, волноводах и многих других. Существуют справочники по расчету фильтров на вполне определенных радиокомпонентах. Однако более универсальным является следующий принцип: вначале разрабатывается эквивалентная схема на идеальных LC-элементах, а затем идеальные элементы пересчитываются в любые реальные радиокомпоненты. При таком пересчете и разрабатывается схема электрическая принципиальная, перечень элементов, выбираются стандартные или проектируются самостоятельно необходимые радиокомпоненты. Наиболее простым вариантом подобного расчета является разработка принципиальной схемы реактивного фильтра с конденсаторами и катушками индуктивности, так как принципиальная схема в этом случае подобна эквивалентной.

Но и при таком общем универсальном расчете существует несколько различающихся между собой методов синтеза эквивалентной схемы LC-фильтра:

– синтез в согласованном режиме из одинаковых Г-, Т-, П-образных звеньев [3]. Этот метод также называют синтезом по характеристическим параметрам или синтезом фильтров типа “k”. Достоинства: простые расчетные формулы; рассчитанное ослабление (неравномерность ослабления) в полосе пропускания ( ) принимается равным нулю. Недостаток: в этом методе синтеза используются различные приближения, на самом же деле согласование во всей полосе пропускания получить невозможно. Поэтому у фильтров, рассчитанных этим методом, ослабление в полосе пропускания может быть более трех децибел;

– полиномиальный синтез [4, 5]. В этом случае требуемый коэффициент передачи мощности аппроксимируется полиномом, то есть синтезируется вся схема, а не отдельные звенья. Этот метод также называют синтезом по рабочим параметрам или синтезом по справочникам нормированных ФНЧ. При использовании справочников, рассчитывается порядок фильтра, выбирается эквивалентная схема ФНЧ, удовлетворяющая требованиям задания. Достоинства: в расчетах учитываются возможные несогласования и отклонения параметров радиоэлементов, ФНЧ легко преобразуются в фильтры других типов. Недостаток: необходимо пользоваться справочниками или специальными программами;

– синтез по импульсным или переходным характеристикам. Основан на взаимосвязи временных и частотных характеристик электрических цепей через различные интегральные преобразования (Фурье, Лапласа, Карсона и т. д.). Например, импульсная характеристика ( ) выражается через передаточную характеристику ( ) с помощью прямого преобразования Фурье:

. (2)

Этот метод нашел применение при синтезе различных трансверсальных фильтров (фильтров с задержками), например цифровых, акустоэлектронных, для которых разработать электрические схемы проще по импульсным, чем по частотным характеристикам. В курсовой работе при разработке схем фильтров рекомендуется применять метод синтеза по характеристическим или рабочим параметрам.

Итак, в работе, касающейся синтеза электрического фильтра, необходимо одним из методов разработать схему электрическую эквивалентную на идеальных реактивных элементах, а затем схему электрическую принципиальную на любых реальных радиоэлементах.

В задании к курсовому проектированию в части, касающейся синтеза электрического фильтра (приложение Б), могут быть приведены следующие данные:

– тип синтезируемого фильтра (ФНЧ, ФВЧ, ПФ, РФ);

– активные сопротивления внешних цепей, с которыми полностью или частично должен быть согласован фильтр в полосе пропускания;

– граничная частота полосы пропускания фильтра;

– граничная частота полосы задерживания фильтра;

– средняя частота фильтра (для ПФ и РФ);

– ослабление фильтра в полосе пропускания (не более);

– ослабление фильтра в полосе задерживания (не менее);

– полоса пропускания ПФ или РФ;

– полоса задерживания ПФ или РФ;

– коэффициент прямоугольности ФНЧ, ФВЧ;

– коэффициент прямоугольности ПФ, РФ.

При необходимости студенты могут самостоятельно выбрать дополнительные данные или требования к проектированию.