Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Технический анализ Часть 3.doc
Скачиваний:
17
Добавлен:
23.08.2019
Размер:
356.35 Кб
Скачать

Определение содержания меди (II) в растворе методом ионообменной хроматографии

1. Цель работы: получить общие сведения о хроматографическом методе, практически ознакомиться с методом ионообменной хроматографии; определить содержание меди (II) в растворе сульфата меди.

  1. Сущность метода

При пропускании исследуемого раствора СuSO4 через колонку с катионитом, находящимся в виде Н+-формы, катионы водорода обмениваются на катионы меди:

R – [An] · H+ + Cu2+ + SO42– → R – [An] · Cu2+ + H+ + SO42–

В растворе накапливаются катионы H+ 2SO4), а катионы Cu2+ адсорбируются из раствора катионитом. Образующуюся Н2SO4 оттитровывают стандартным раствором щелочи. Количество щелочи, израсходованной на титрование, эквивалентно количеству эквивалентов выделившейся Н2SO4 и количеству эквивалентов Cu2+. Таким образом, по количеству щелочи, пошедшей на титрование, определяют массу поглощенных катионов меди.

  1. Приборы и реактивы

1) рН-метр (рН-121 или иономер ЭВ-79), стеклянный и хлорсеребряный электроды, магнитная мешалка, стержень-мешалка, хроматографическая колонка; 2) посуда стеклянная: бюретка вместимостью 25  см3 или микробюретка вместимостью 10 см3, мерные колбы вместимостью 100 и 1000 см3, пипетка Мора вместимостью 5 см3, мерные цилиндры вместимостью 25 и 100 см3, химический стакан для титрования вместимостью 200-250 см3, коническая пробирка; 3) растворы: концентрированный раствор соляной кислоты HCl ( = 1,18 г/см3), хлорид бария с массовой долей растворенного вещества  (ВаСl2) = 10 %, соляная кислота (1:1), стандартный раствор щелочи с молярной концентра­цией с(NaOH) =  0,1 моль/дм3, нитрат серебра с массовой долей растворенного вещества  (AgNO3) = 10 %, катионит КУ-1 или КУ-2.

  1. Алгоритм определения

С помощью пипетки Мора отбирают 5 см3 исследуемого раствора сульфата меди (II). Исследуемый раствор переносят в хроматографическую колонку и пропускают через слой подготовленного катионита со скоростью одна капля в секунду. Вытекающий из колонки раствор серной кислоты собирают в чистый стакан объемом 200-250 см3. Затем промывают катионит дистиллированной водой, собирая промывные воды в тот же стакан. Проводят проверку на полноту отмывки десорбированных катионов Н+ (H2SO4). Для этого в коническую пробирку собирают 2-3 капли промывной жидкости и добавляют 1-2 капли раствора хлорида бария с массовой долей растворенного вещества (ВаСl2) = 10 %. Отсутствие помутнения указывает на полное промывание катионита от H2SO4. Раствор из конической пробирки сливают в тот же стакан. Убедившись в полноте промывания катионита оттитровывают раствор H2SO4 стандартным раствором щёлочи. Титрование проводят потенциометрически.

Стакан с раствором H2SO4 ставят на магнитную мешалку, опускают в него электроды и стержень-мешалку. Включают магнитную мешалку и регулируют скорость вращения стержня-мешалки. Измеряют начальное значение рН. Прибавляют небольшими порциями стандартный раствор щелочи, после прибавления каждой порции стандартного раствора щелочи измеряют pH раствора. Экспериментальные данные заносят в табл. 24. По экспериментальным данным строят дифференциальную кривую титрования зависимости = (рис. 18) и определяют объём стандартного раствора щёлочи (Vэщ), затраченный на титрование ионов Cu2+. После окончания работы катионит регенерируют, пропуская через него 25 см3 раствора HCl (1:1) и промывают до полного отсутствия реакции на ионы хлора.

Таблица 24