Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FizikaBilety_-_dlya_sliania.docx
Скачиваний:
9
Добавлен:
25.09.2019
Размер:
537.05 Кб
Скачать

Вопрос9. Потенциальная энергия.

Потенциальная энергия   — скалярная физическая величина, характеризующая способность некого тела (или материальной точки) совершать работу за счет своего нахождения в поле действия сил.

Потенциальная энергия   в поле тяготения Земли вблизи поверхности приближённо выражается формулой:

где   — масса тела,   — ускорение свободного падения,   — высота положения центра масс тела над произвольно выбранным нулевым уровнем. Пространство, в котором действуют консервативные силы, называется потенциальным полем.  Каждой точке потенциального поля соответствует некоторое значение силы   , действующей на тело, и некоторое значение потенциальной энергии  U. Значит, между силой     и  U  должна быть связь   , с другой стороны,  dA = –dU, следовательно   , отсюда

 

.

 

 

       Проекции вектора силы на оси координат:

       Вектор силы можно записать через проекции:

 

F = –grad U,

 

 

  .  где grad это Градиент – это вектор, показывающий направление наибыстрейшего изменения функции. Следовательно, вектор     направлен в сторону наибыстрейшего уменьшения U.

Вопрос10. Закон сохранения механической энергии.

Если тела, составляющие замкнутую механическую систему, взаимодействуют между собой только посредством сил тяготения и упругости, то работа этих сил равна изменению потенциальной энергии тел, взятому с противоположным знаком: 

A = –(Eр2 – Eр1).

По теореме о кинетической энергии эта работа равна изменению кинетической энергии тел: 

Следовательно 

 или

Ek1 + Ep1 = Ek2 + Ep2.

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

Это утверждение выражает закон сохранения энергии в механических процессах. Он является следствием законов Ньютона. Сумму E = Ek + Ep называют полной механической энергией. Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

Вопрос11. Упругий и неупругий удар шаров.

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело. Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел. При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии. Простым примером абсолютно упругого столкновения может быть центральный удар двух бильярдных шаров, один из которых до столкновения находился в состоянии покоя. Центральным ударом шаров называют соударение, при котором скорости шаров до и после удара направлены по линии центров. В общем случае массы m1 и m2 соударяющихся шаров могут быть неодинаковыми. По закону сохранения механической энергии 

Здесь υ1 – скорость первого шара до столкновения, скорость второго шара υ2 = 0, u1 и u2 – скорости шаров после столкновения. Закон сохранения импульса для проекций скоростей на координатную ось, направленную по скорости движения первого шара до удара, записывается в виде: 

m1υ1 = m1u1 + m2u2.

Мы получили систему из двух уравнений. Эту систему можно решить и найти неизвестные скорости u1 и u2 шаров после столкновения: 

В частном случае, когда оба шара имеют одинаковые массы (m1 = m2), первый шар после соударения останавливается (u1 = 0), а второй движется со скоростьюu2 = υ1, т. е. шары обмениваются скоростями (и, следовательно, импульсами). Если бы до соударения второй шар также имел ненулевую скорость (υ2 ≠ 0), то эту задачу можно было бы легко свести к предыдущей с помощью перехода в новую систему отсчета, которая движется равномерно и прямолинейно со скоростью υ2 относительно «неподвижной» системы. В этой системе второй шар до соударения покоится, а первый по закону сложения скоростей имеет скорость υ1' = υ1 – υ2. Определив по приведенным выше формулам скорости u1 и u2 шаров после соударения в новой системе, нужно сделать обратный переход к «неподвижной» системе. Таким образом, пользуясь законами сохранения механической энергии и импульса, можно определить скорости шаров после столкновения, если известны их скорости до столкновения. Центральный (лобовой) удар очень редко реализуется на практике, особенно если речь идет о столкновениях атомов или молекул. При нецентральном упругом соударении скорости частиц (шаров) до и после столкновения не направлены по одной прямой. Частным случаем нецентрального упругого удара может служить соударение двух бильярдных шаров одинаковой массы, один из которых до соударения был неподвижен, а скорость второго была направлена не по линии центров шаров. После нецентрального соударения шары разлетаются под некоторым углом друг к другу. Для определения скоростей   и   после удара нужно знать положение линии центров в момент удара или прицельное расстояние d, т. е. расстояние между двумя линиями, проведенными через центры шаров параллельно вектору скорости   налетающего шара. Если массы шаров одинаковы, то векторы скоростей   и   шаров после упругого соударения всегда направлены перпендикулярно друг к другу. Это легко показать, применяя законы сохранения импульса и энергии. При m1 = m2 = m эти законы принимают вид: 

Первое из этих равенств означает, что векторы скоростей  ,   и   образуют треугольник (диаграмма импульсов), а второе – что для этого треугольника справедлива теорема Пифагора, т. е. он прямоугольный. Угол между катетами   и   равен 90°.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]