Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Типовик № 2 «исследование Функций» По Высшой Математике (Старинец В. В.).doc
Скачиваний:
19
Добавлен:
07.10.2014
Размер:
185.34 Кб
Скачать

Типовой индивидуальный расчет №2: "Исследование функций"

1. Теоретические вопросы

1. Сформулируйте теоремы Ролля, Лагранжа и Коши.

  1. Теорема Ролля (м.Ролль, 1652-1719).

Если функция у = f(x) удовлетворяет условиям:

(i) f(x) непрерывна на отрезке [а, b];

(ii) существует производная f(x) в интервале (а, b);

(iii) f(a) = f(b), т. е. на концах отрезка функция принимает одинаковые значения, то существует точка с Є (а, b) такая, что f'(c) = 0.

Геометрический смысл теоремы Роля:

В том, что суще­ствует точка, в которой касательная горизонтальна.

Причина этого состоит в том, что функция, принимающая на концах отрезка одинаковые значения, внутри отрезка имеет либо максимум, либо минимум.

Замечание: Если хотя бы одно из условий (i) — (iii) теоремы не выполняется, то теорема Ролля может быть неверна.

  1. Теорема Коши (о.Л.Коши, 1789-1857).

Если функции у = f(x) u y=g(х) удовлетворяют условиям:

(i) f(x) и q(х) непрерывны на отрезке [а, b];

(ii) существуют производные f ‘(x) и g'(х) в интервале (а,b );

(iii) g'(х) 0 в интервале (а, b), то существует точка с Є (а, b), для которой выполняется равенство

  1. Теорема Лагранжа (ж.Л.Лагранж, 1736-1813).

Если функция у = f{x) удовлетворяет условиям:

(i) f(x) непрерывна на отрезке [а, b];

(ii) существуют производная f ’(x) в интервале (а, b), то существует точка сЄ (а, b), для которой выполняется равенство

2. Какова связь между возрастанием и убыванием функции и знаком ее производной?

Если у функции у = f(x) существует производная на интервале (а, b), то

функция f(x) возрастает <=> f '{x) > 0 и функция f(x) убывает <=> f ' (х) < 0

3. Какая точка называется точкой локального экстремума функции?

Точка х0 называется точкой локального максиму­ма (соответственно, минимума) функции f(х), если в некоторой окре­стности точки х0 выполняется неравенство f{x0) ≥ f (х) (соответственно f{x0) f(x)). Точки локального максимума и минимума называются точками локального экстремума.

4. Как расположена касательная к графику функции в точ­ке экстремума?

Касательная к графику функции в точ­ке экстремума расположена параллельно оси Ox. Т.к производная функции в этой точке равна нулю и численно совпадает с угловым коэффициентом касательной к кривой, проведенной в этой точке.

5. Сформулировать достаточные условия экстремума функ­ции.

Если функция f{x) непрерывна в окрестности точки х0, имеет производную в проколотой окрестности этой точки и если f{x) меняет знак в точке х0, то х0 — точка локального экстре­мума. Более точно:

если f{x) меняет знак с' + 'на' — ', то х0 — точка локального мак­симума;

если f(x) меняет знак с' — 'на' + ', то x0 — точка локального ми­нимума.

6. Дать определение выпуклости и вогнутости графика и его точек перегиба.

Определение. Функция у= f{x) называется выпуклой вниз или просто выпуклой (соответственно, выпуклой вверх или вогнутой) в точке х0, если в этой точке существует касательная к графику, т.е. 3 f{x0), и в некоторой окрестности точки х0 график функции лежит над (соответственно, под) касательной.

Определение. Точки, в которых функция меняет направление вы­пуклости, т.е. меняет выпуклость на вогнутость или вогнутость на выпуклость, называются точками перегиба.

7. Какова связь между выпуклостью и вогнутостью графика и знаком ее второй производной?

Пусть функция у = f(х) имеет вторую производную в окрестности точки х0, которая непрерывна в этой точке. Тогда если f"(х0) > 0, то у = f(x) выпукла, а если f'(x0) < 0, то у = f{x) вогну­та в точке х0.

Доказательство. Применим формулу Тейлора с остаточным чле­ном в форме Лагранжа для функции f(х) в точке х0 при x=1:

где с — некоторая точка в интервале (х0, х). Или

Если теперь f "(x0) > 0, то в силу непрерывности f"(с)≥0 в некото­рой окрестности точки х0, поэтому f(х) — у(х)≥0 функция выпукла. Если же f"(х0) < 0, то f'(с) < 0 поэтому f(х) — у(х) ≤0 и функция вогнута в точке х0. ■

Замечание (мнемоническое правило). Сделаем общее замечание о запоминании формул (о контроле памяти). Если вы забыли некото­рое универсальное (которое действует всегда) правило, посмотрите, как оно действует в простейшем частном случае. В частности, если вы забыли, какие знаки второй производной соответствуют выпуклости и вогнутости, представьте себе мысленно графики функций у = х2 и у= =—х2. Парабола у = х2 выпукла, а у" = 2 > 0. Так же должно быть всегда. В школе для запоминания применяют «правило дождя».

Замечание. Выпуклые и вогнутые функции можно охарактери­зовать также следующим геометрическим свойством.

Мы видим, что если функция выпуклая (вогнутая), то при возраста­нии х касательные в точках х становятся более крутыми (пологими), т.е. угол наклона касательных возрастает (убывает). За угол наклона касательных отвечает f(x) = tgct. Поэтому если функция f(x) выпук­лая, то f{x) возрастает и, следовательно, f'(x) > 0. И наоборот.

8. Сформулируйте достаточные условия существования то­чек перегиба.

Если функция f(x) имеет непрерывную вторую производную f"(x) и в точке х0 f"(x) ме­няет знак, то х0 — точка перегиба.

9. Что называется асимптотой кривой? Что можно сказать о функции, если она имеет горизонтальную (вертикальную) асимптоту?

Определение. Асимптота кривой γэто прямая, к которой эта кри­вая неограниченно приближается на бесконечности, т.е. это такая прямая 1, для которой расстояние d от точки Me у до l стремится к нулю, когда точка М удаляется по кривой на бесконечность. Более точ­но, асимптота—это луч. Если кривая приближается к лучу, т.е. к одно­му «концу прямой», то говорят, что эта прямая является односторон­ней асимптотой. Если кривая приближается к «обоим концам» пря­мой, то прямая является двусторонней асимптотой. Асимптотой фун­кции f(x) называется асимптота ее графика γ: у = f(x).

1. Если функция имеет горизонтальную асимптоту то, уравнение асимптоты имеет вид у = b = const

2. Если функция имеет вертикальную асимптоту то, что график функции “уходит на бесконечность” при x → x0 и уравнение асимптоты имеет вид x= x0 = const.

10. Необходимое и достаточное условие существования на­клонной асимптоты.