Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Биохимия семестр 1

.pdf
Скачиваний:
296
Добавлен:
13.11.2021
Размер:
5.89 Mб
Скачать

Пептидные связи.

Аминокислоты способны соединяться между собой связями, которые называются пептидными, при этом образуется полимерная молекула. Если количество аминокислот не превышает 10, то новое соединение называется пептид; если от 10 до 40 аминокислот – полипептид, если более 40 аминокислот – белок.

Пептидная связь – это связь между α-карбоксильной группой одной аминокислоты и α- аминогруппой другой аминокислоты.

Пептидная связь — это амидная ковалентная связь, соединяющая аминокислоты в полипептидную

цепочку

В полипептидной цепи различают: N-конец, образованный свободной α-аминогруппой и С-конец, имеющий свободную α-карбоксильную группу.

Последовательность аминокислот в цепи изображают, начиная с N-концевой аминокислоты. С нее же начинается нумерация аминокислотных остатков. В полипептидной цепи многократно повторяется последовательность: –NH-CH-CO- .

Эта последовательность формирует пептидный остов. Следовательно, полипептидная цепь состоит из остова, имеющего регулярную, повторяющуюся структуру, и отдельных боковых групп (R-групп)

К свойствам пептидной связи относятся:

1. Копланарность

Все атомы, входящие в пептидную группу находятся в одной плоскости, при этом атомы "Н" и "О" расположены по разные стороны от пептидной связи.

2.Транс-положение заместителей

Радикалы аминокислот по отношению к оси пептидной C—N- связи находятся по "разные" стороны, в транс-положении.

3. Две равнозначные формы

Пептидная связь находится в кетоформе и енольной форме.

Между кетонной и енольной формой осуществляется перенос протона. Атом водорода при α-атоме углерода обладает слабыми кислотными свойствами.

4. Способность к образованию водородных связей.

Атомы кислорода и водорода, входящие в пептидную группу, обладают способностью образовывать водородные связи с атомами кислорода и водорода других пептидных групп.

5. Пептидная связь имеет частично характер двойной связи.

Длина пептидной связи меньше, чем одинарной связи, она является жесткой структурой, и вращение вокруг нее затруднено. Но так как, кроме пептидной, в белке есть и другие связи, цепочка аминокислот способна вращаться вокруг основной оси, что придает белкам различную конформацию (пространственное расположение атомов).

2. Белки (протеины): определение, биологические функции.

Белок – это последовательность аминокислот, связанных друг с другом пептидными связями.

Функции белков.

Структурная функция

Вещество соединительной ткани и межклеточный матрикс формируют белки коллаген, эластин, кератин, протеогликаны.

Непосредственно участвуют в построении мембран и цитоскелета (интегральные, полуинтегральные и поверхностные белки) – спектрин (поверхностный, основной белок цитоскелета эритроцитов), гликофорин (интегральный, фиксирует спектрин на поверхности).

К данной функции можно отнести участие в создании органелл – рибосомы.

Ферментативная функция

Все ферменты являются белками.

Гормональная функция

Регуляцию и согласование обмена веществ в разных клетках организма осуществляют гормоны. Такие гормоны как инсулин и глюкагон являются белками, все гормоны гипофиза являются пептидами или небольшими белками.

Рецепторная функция

Эта функция заключается в избирательном связывании гормонов, биологически активных веществ и медиаторов на поверхности мембран или внутри клеток.

Транспортная функция

Только белки осуществляют перенос веществ в крови, например, липопротеины (перенос жира), гемоглобин (связывание кислорода), гаптоглобин (транспорт гема), трансферрин (транспорт железа). Белки транспортируют в крови катионы кальция, магния, железа, меди и другие ионы.

Транспорт веществ через мембраны осуществляют белки - Na+,К+-АТФаза (антинаправленный трансмембранный перенос ионов натрия и калия), Са2+-АТФаза (выкачивание ионов кальция из клетки), глюкозные транспортеры.

Резервная функция

В качестве примера депонированного белка можно привести производство и накопление в яйце яичного альбумина.

У животных и человека таких специализированных депо нет, но при длительном голодании используются белки мышц, лимфоидных органов, эпителиальных тканей и печени.

Сократительная функция

Существует ряд внутриклеточных белков, предназначенных для изменения формы клетки и движения самой клетки или ее органелл (тубулин, актин, миозин).

Защитная функция

Защитную функцию, предупреждая инфекционный процесс и сохраняя устойчивость организма, выполняют иммуноглобулины крови, факторы системы комплемента (пропердин), при повреждении тканей работают белки свертывающей системы крови - например, фибриноген, протромбин, антигемофильный глобулин. Механическую защиту в виде слизистых и кожи осуществляют коллаген и протеогликаны.

К данной функции также можно отнести поддержание постоянства коллоидноосмотического давления крови, интерстиция и внутриклеточных пространств, а также иные функции белков крови.

Белковая буферная система участвует в поддержании кислотно-щелочного состояния.

3. Уровни структурной организации белков. Первичная структура.

Функциональные свойства белков определяются конформацией, т.е. расположением полипептидной цепи в пространстве.

Объединение аминокислот через пептидные связи создает линейную полипептидную цепь,

которая называется первичной структурой белка.

Первичная структура белков, т.е. последовательность аминокислот в нем, программируется последовательностью нуклеотидов в ДНК. Выпадение, вставка, замена нуклеотида в ДНК приводит к изменению

аминокислотного состава и, следовательно, структуры синтезируемого белка.

Если изменение последовательности аминокислот носит не летальный характер, а приспособительный или хотя бы нейтральный, то новый белок может передаться по наследству и остаться в популяции. В результате возникают новые белки с похожими функциями. Такое явление называется полиморфизм белков.

4. Вторичная структура белка. Типы и их характеристика.

Вторичная структура белка – это способ укладки полипептидной цепи в более компактную структуру, при которой происходит взаимодействие пептидных групп с образованием между ними водородных связей.

Выделяют два возможных варианта вторичной структуры: в виде "каната" – α-спираль (α- структура), и в виде "гармошки" – β-складчатый слой (β-структура). В одном белке, как правило, одновременно присутствуют обе структуры, но в разном долевом соотношении. В

глобулярных белках преобладает α-спираль, в фибриллярных – β-структура.

Вторичная структура образуется только при участии водородных связей между пептидными группами: атом кислорода одной группы реагирует с атомом водорода второй, одновременно кислород второй пептидной группы связывается с водородом третьей и т.д.

α-Спираль

Данная структура является правозакрученной спиралью, образуется при помощи водородных связей между пептидными группами 1-го и 4- го, 4-го и 7-го, 7-го и 10-го и так далее аминокислотных остатков.

Формированию спирали препятствуют пролин и гидроксипролин, которые из-за своей циклической структуры обусловливают "перелом" цепи, т.е. ее принудительный изгиб как, например, в коллагене.

Высота витка спирали составляет 0,54 нм и соответствует высоте 3,6 аминокислотных остатков, 5 полных витков соответствуют 18 аминокислотам и занимают 2,7 нм

β-Складчатый слой

В этом способе укладки белковая молекула лежит "змейкой", удаленные отрезки цепи оказываются поблизости друг от друга. В результате пептидные группы ранее удаленных аминокислот белковой цепи способны взаимодействовать при помощи водородных связей.

Ориентация реагирующих участков может быть параллельна (когда соседние цепи идут в одном направлении) или антипараллельна (цепи идут в противоположном направлении). Таких взаимодействующих друг с другом участков одного белка может быть от двух до пяти.

Под направлением белковой цепи понимают направление от N-конца (N-концевой аминокислоты) к C-концу (С-концевой аминокислоте).

5. Третичная структура белка. Глобулярные и фибриллярные белки.

Третичная структура – это укладка полипептидной цепи в глобулу ("клубок"). Четкой границы между вторичной и третичной структурами провести нельзя, однако в основе третичной структуры лежат взаимосвязи между радикалами аминокислот, отстоящими далеко друг от друга в цепи. Благодаря третичной структуре происходит еще более компактная укладка белковой цепи.

Аминокислоты принимают участие в формировании третичной структуры, образуя связи своими функциональными группами (радикалами), например:

водородные – между НО-, СООН-, NH2-группами радикалов аминокислот,

дисульфидные – между остатками цистеина,

гидрофобные – между остатками алифатических и ароматических аминокислот,

ионные – между СОО–-группами глутамата и аспартата и NH3+-группами лизина и аргинина,

псевдопептидные – между дополнительными СОО–-группами глутамата и аспартата и дополнительными NH3+-группами лизина и аргинина.

Если белки состоят из двух и более полипептидных цепей, связанных между собой нековалентными (не пептидными и не дисульфидными) связями, то говорят, что они обладают четвертичной структурой.

Такие агрегаты стабилизируются водородными связями, ионными связями и электростатическими взаимодействиями между остатками аминокислот, находящимися на поверхности глобулы.

Подобные белки называются олигомерами, а их индивидуальные цепи – протомерами (мономерами, субъединицами). Если белки содержат 2 протомера, то они называются димерами, если 4, то тетрамерами и т.д.

Такие агрегаты стабилизируются водородными связями, ионными связями и электростатическими взаимодействиями между остатками аминокислот, находящимися на поверхности глобулы.

Подобные белки называются олигомерами, а их индивидуальные цепи – протомерами (мономерами, субъединицами).

Так как субъединицы в олигомерах очень тесно взаимодействуют между собой, то любое изменение конформации какой-либо одной субъединицы обязательно влечет за собой изменение других субъединиц. Этот эффект называется кооперативное взаимодействие.

Глобулярные белки́— белки, в молекулах которых полипептидные цепи плотно свёрнуты в компактные шарообразные структуры — глобулы (третичные структуры белка).

Глобулярная структура белков обусловлена гидрофобно-гидрофильными взаимодействиями: снаружи гидрофильные (имеющие водородные соединения с окружающей средой), а внутри гидрофобные (отталкивающие воду).

К глобулярным белкам относятся ферменты, иммуноглобулины, некоторые гормоны белковой природы (например, инсулин) а также другие белки, выполняющие транспортные, регуляторные и вспомогательные функции.

У глобулярных белков отношение длинной оси молекулы к короткой (степень асимметрии) равна 3-5

Фибриллярные белки — белки, имеющие вытянутую нитевидную структуру, в которой отношение длинной оси молекулы к короткой (степень асимметрии) составляет от 80 до

150.

Большинство фибриллярных белков не растворяется в воде, имеет большую молекулярную массу и высокорегулярную пространственную структуру, которая стабилизируется, главным образом, взаимодействиями (в том числе и ковалентными) между различными полипептидными цепями.

Первичная и вторичная структура фибриллярного белка также, как правило, регулярна. Полипептидные цепи многих фибриллярных белков расположены параллельно друг другу вдоль одной оси и образуют длинные волокна (фибриллы) или слои.

К фибриллярным белкам относят:

α-структурные фибриллярные белки (кератины, на долю которых приходится почти весь сухой вес волос и других роговых покровов, тропомиозин, белки промежуточных филаментов)

β-структурные фибриллярные белки (фиброин шёлка)

коллаген — белок сухожилий и хрящей

эластин — белок сосудов и легких. Фибриллярные белки являются гарантом стабильности каркаса легких, его растяжимости и эластичности. Они создают нужные условия для газообмена.

6. Химические связи, стабилизирующие структуры белковой молекулы. Денатурация и

ренатурация.

Денатурация белка — это нарушение его пространственной структуры. Белковая молекула имеет нативную — энергетически более выгодную (функциональную) конформацию благодаря наличию большого числа слабых связей и быстро денатурирует при изменении условий среды.

Изменение температуры, ионной силы, рН, а также обработка органическими или некоторыми дестабилизирующими агентами может привести к нарушению нативной конформации. Денатурирующие вещества образуют связи с аминогруппами или карбонильными группами пептидного остова или некоторыми боковыми радикалами аминокислот, подменяя собственными связями внутримолекулярные взаимодействия в белке, вследствие чего вторичная и третичная структуры изменяются. Эти изменения не затрагивают первичную структуру, однако при этом биологическая активность белка утрачивается.

Ренативация белка. При определенных условиях денатурированный белок может быть ренативирован. Это происходит при удалении денатурирующего или дестабилизирующего фактора. Например, в случае рибонуклеазы при удалении денатурирующего вещества — мочевины — диализом полипептид самопроизвольно восстанавливают свою нативную конформацию. То же может происходить при медленном охлаждении денатурированного нагреванием белка. Это подтверждает тезис о том, что характер укладки пептидной цепи предопределен первичной структурой.

Зимогены - функционально неактивные предшественники ферментов, подвергающиеся тем или иным преобразованиям, в результате чего образуется каталитически активный продукт — фермент.

Холопротеины - двухкомпонентные белки, в которых помимо пептидных цепей (простого белка) содержится компонент неаминокислотной природы — простетическая группа. При гидролизе сложных белков, кроме аминокислот, освобождается небелковая часть или продукты её распада. В качестве простетической группы могут выступать различные органические (липиды, углеводы) и неорганические (металлы) вещества.

Фолдинг - называют процесс спонтанного сворачивания полипептидной цепи в уникальную нативную пространственную структуру. Процесс формирования пространственной структуры белка.

Лиганд — это химическое соединение, которое образует комплекс с той или иной биомолекулой и производит, вследствие такого связывания, те или иные биохимические, физиологические или фармакологические эффекты.

Олигопептиды - пептиды, последовательность которых короче примерно 10—20 аминокислотных остатков.

Нативная конформация - в клетках живого организма при определенных температуре, pH и концентрации физиологической среды белковые молекулы образуют термодинамически наиболее устойчивую в этих условиях пространственную структуру, обеспечивающую выполнение белком его биологической функции.

Водородная связь — форма ассоциации между электроотрицательным атомом и атомом водорода H, связанным ковалентно с другим электроотрицательным атомом. В качестве электроотрицательных атомов могут выступать N, O или F.

Активный центр – это особая часть молекулы фермента, определяющая её специфичность и каталитическую активность. Активный центр непосредственно осуществляет взаимодействие с молекулой субстрата или с теми её частями, которые непосредственно участвуют в реакции.

Аллостерический центр - центр регуляции активности фермента, который пространственно отделен от активного центра и имеется не у всех ферментов. Связывание с аллостерическим центром какой-либо молекулы (называемой активатором или ингибитором, а также эффектором, модулятором, регулятором) вызывает изменение конфигурации белка-фермента и, как следствие, скорости ферментативной реакции. В качестве такого регулятора может выступать продукт данной или одной из последующих реакций, субстрат реакции или иное вещество.

Гидрофобное взаимодействие— притяжение между неполярными частицами в воде (или других полярных растворителях), которое обусловлено термодинамической невыгодностью контакта воды с неполярными веществами.

1. Ферменты: определение и биологическая роль.

Ферменты — это группа белков, обладающих способностью к ускорению химических реакций.

СПЕЦИФИЧНОСТЬ

субстратная: способность каждого фермента взаимодействовать лишь с одним или несколькими определёнными субстратами;

каталитическая: способность катализировать превращение присоединённого субстрата по одному из возможных путей его превращения

ЭФФЕКТИВНОСТЬ

• способность увеличивать скорость химических реакций в десятки миллионов раз;

ЛАБИЛЬНОСТЬ

• способность к небольшим изменениям нативной конформации вследствие разрыва слабых связей;

АДАПТИВНОСТЬ

• способность изменять активность при изменении потребности в продукте катализируемой реакции.

2. Классификация и номенклатура ферментов. Примеры реакций различных типов и ферментов, их катализирующих.

НОМЕНКЛАТУРА ФЕРМЕНТОВ

1. Тривиальное название – название, сложившееся исторически.

Например, пепсин,трипсин. Для некоторых ферментов к названию субстрата добавляется окончание "-аза" –уреаза, амилаза, липаза.

2. Систематическое название – согласно современной классификации. Как производное систематического названия у многих ферментов имеется одно или несколько рабочих названий.

КЛАССИФИКАЦИЯ ФЕРМЕНТОВ

I Класс. Оксидоредуктазы.

Ферменты катализируют окислительно-восстановительные реакции, лежащие в основе биологического окисления.

Коферментами этого класса являются НАД, НАДФ, ФАД, ФМН, убихинон, глутатион, липоевая кислота.

Класс насчитывает 22 подкласса.

1. Дегидрогеназы – оксидоредуктазы, катализирующие дегидрирование субстрата с использованием в качестве акцептора водорода любых молекул, кроме кислорода. (алкогольдегидрогеназа, малатдегидрогеназа)

2. Если перенос водорода от молекулы донора трудно доказуем, то такие оксидоредуктазы называют редуктазами. (5-альфа-редуктаза)

3. Оксидазы – оксидоредуктазы, катализирующие окисление субстратов с молекулярным кислородом в качестве акцептора электронов без включения кислорода в молекулу субстрата. (цитохромоксидаза)

4.Оксигеназы – катализируют реакции окисления путем включения атома кислорода в гидроксильную группу молекулы субстрата.

5. Пероксидазы – оксидоредуктазы, катализирующие реакции с пероксидом водорода в качестве акцептора электронов.

II КЛАСС . ТРАНСФЕРАЗЫ

Катализируют реакции переноса различных групп от одного субстрата (донор) к другому (акцептор), участвуют в реакциях взаимопревращения различных веществ, обезвреживания природных и чужеродных соединений.

Коферментами являются пиридоксальфосфат, коэнзим А, тетрагидрофолиевая кислота, метилкобаламин.

Класс подразделяется на 9 подклассов в зависимости от строения переносимых ими групп.

Часто встречается рабочее название трансфераз – киназы. Это трансферазы, катализирующие перенос фосфата от АТФ на субстрат (моносахариды, белки и др), т.е. фосфотрансферазы.

Пример: протеинкиназа, гексокиназа

III КЛАСС . ГИДРОЛАЗЫ

Гидролазы – ферменты, осуществляющие разрыв внутримолекулярных связей в субстрате (за исключением С-С связей) путем присоединения элементов Н2О,

Подразделяются на 13 подклассов.

Ввиду сложности многих субстратов у ряда ферментов сохранены тривиальные названия, например, пепсин, трипсин. Коферменты отсутствуют.

Примеры: желудочно-кишечного тракта (пепсин, трипсин, липаза, амилаза и другие) и лизосомальными ферментами.

Исторически названия гидролаз складывались из названия субстрата с окончанием "-аза" – коллагеназа, амилаза, липаза, ДНК-аза. Наиболее часто встречаются следующие рабочие названия гидролаз:

1.Эстеразы – гидролиз сложноэфирных связей.

2.Липазы – гидролиз нейтральных жиров.

3.Фосфатазы – гидролиз моноэфиров фосфорной кислоты.