Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
VOPROS_1-10_FIZIka.doc
Скачиваний:
103
Добавлен:
11.02.2015
Размер:
505.34 Кб
Скачать

Вопрос 6

Если источник возмущения мал (точка) и скорость распространения возмущения во все стороны одинакова (изотропная среда), то фронт волны должен иметь вид сферической поверхности с центром в источнике.  В таком случае волна называется сферической. Уравнение такой монохроматической сферической волны имеет вид:

,

где  – амплитуда волны, f0 – амплитуда на единичном расстоянии r от источника. Выражение это показывает, что амплитуда сферической волны уменьшается пропорционально расстоянию от источника.

Уравнения сферической монохроматической электромагнитной волны можно записать в следующем виде:

,

.

В комплексной форме эти уравнения принимают вид:

,

.

Сферическая волна соответствует источнику точечного размера, т. е. представляет абстракцию. Однако даже при источнике конечного размера фронт волны на достаточно большом расстоянии r будет сферической поверхностью с достаточным приближением.

В практической оптике для многих задач можно считать фронт сферическим, если расстояние r превосходит линейные размеры источника в десять раз или более.

Вопрос 7

Электромагни́тное излуче́ние (электромагнитные волны) — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля.

Среди электромагнитных полей вообще, порождённых электрическими зарядами и их движением, принято относить собственно к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников — движущихся зарядов, затухая наиболее медленно с расстоянием.

Электромагнитное излучение подразделяется на:

  • радиоволны (начиная со сверхдлинных),

  • терагерцовое излучение,

  • инфракрасное излучение,

  • видимый свет,

  • ультрафиолетовое излучение,

  • рентгеновское излучение и жёсткое (гамма-излучение) (см. ниже, см. также рисунок).

Электромагнитное излучение способно распространяться практически во всех средах. В вакууме (пространстве, свободном от вещества и тел, поглощающих или испускающих электромагнитные волны) электромагнитное излучение распространяется без затуханий на сколь угодно большие расстояния[источник не указан 24 дня], но в ряде случаев достаточно хорошо распространяется и в пространстве, заполненном веществом (несколько изменяя при этом своё поведение).

Главное условие возникновения электромагнитной волны — ускоренное движение электрических зарядов. При скорости заряда, равной нулю, существует только элект­рическое поле. При постоянной скорости заряда возникает электромаг­нитное поле.  При ускоренном движении заряда происходит излучение электромагнитной волны, кото­рая распространяется в про­странстве с конечной скоро­стью.  Разработка идеи электромагнитных волн принадлежит Максвеллу, но уже Фарадей догадывался об их существовании

Вопрос 8

Описывается функцией координат и времени вида:

 - амплитуда волны,

 - фаза волны,

 - начальная фаза

Из уравнения (1) видно, что в плоскости  колебания происходят по одному и тому же закону с одной и той же частотой , амплитудой и одной и той же начальной фазой . Поверхности, на которых колебания возмущения  происходят синфазно, называются волновыми поверхностями.

Поляриза́ция волн — характеристика поперечных волн, описывающая поведение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны.

В продольной волне поляризация возникнуть не может, так как направление колебаний в этом типе волн всегда совпадают с направлением распространения.[1]

Поперечная волна характеризуется двумя направлениями: волновым вектором и вектором амплитуды, всегда перпендикулярным к волновому вектору. Волновой вектор показывает направление распространения волны, а вектор поляризации представляет собой вектор напряженности электрического поля. Так что в трёхмерном пространстве имеется ещё одна степень свободы — вращение вокруг волнового вектора.

Причиной возникновения поляризации волн может быть:

  • несимметричная генерация волн в источнике возмущения;

  • анизотропность среды распространения волн;

  • преломление и отражение на границе двух сред.

Зависимость мгновенных потенциалов при круговой поляризации

В общем случае для гармонических волн конец вектора колеблющейся величины описывает в плоскости, поперечной направлению распространения волны, эллипс, и такая поляризация называется эллиптической. Важными частными случаями являются линейная поляризация, при которой колебания возмущения происходят в какой-то одной плоскости, в таком случае говорят о «плоско-поляризованной волне», и круговая или циркулярная поляризация, при которой конец вектора амплитуды описывает окружность в плоскости колебаний, круговая поляризация в зависимости от направления вращения вектора может быть правой или левой.

Поляризация описывается Фигурами Лиссажу и соответствует сложению поперечных колебаний равной частоты.

В  случае плоской монохроматической волны компоненты вектора  напряженности электрического поля (также как и компоненты вектора  напряженности магнитного поля) меняются совместно по гармоническому закону:

Здесь набег фазы .

Поляризационный эллипс

Преобразовав и сложив первые два уравнения, можно получить уравнение движения вектора :

, где разность фаз .

Эта квадратичная форма описывает эллипс. То есть конец вектора напряженности плоской монохроматической волны описывает эллипс. Для того, чтобы привести её к каноническому виду, нужно повернуть эллипс на угол :

Любой эллипс можно задать в параметрической форме:

Здесь  и  — амплитудные значения компонент вектора , соответствующие большой и малой полуосям эллипса. Из последних двух систем уравнений можно сделать следующий вывод:

,

где  — вектор Пойнтинга. Таким образом, в плоской монохроматической волне величина вектора Пойнтинга равна сумме потоков в двух произвольных ортогональных направлениях. Вводя обозначения  и , из тех же двух систем уравнений можно вывести соотношения:

и

.[4]

С помощью последних трех уравнений можно вычислить все параметры эллиптически поляризованной волны. А именно, зная величины  и  в произвольной системе координат, можно вычислить величину вектора Пойнтинга. С помощью разности фаз  можно определить угол поворота большой оси эллипса  относительно нашей системы координат, а также величины большой и малой полуосей эллипса  и .

Направление вращения волнового вектора определяется разностью фаз . Если , тогда поляризация называется правой, а если, напротив, , поляризация называется левой. Если наблюдатель смотрит навстречу световому лучу, то правой поляризации соответствует движение конца вектора по часовой стрелке, а левой поляризации — против часовой стрелки. Если разность фаз равна , где  — целое число, то эллипс вырождается в отрезок. Такая поляризация называется линейной. Другой важный случай возникает, когда  и . В этом случае эллипс превращается в окружность, параметрическое уравнение которой имеет вид:

Нетрудно убедиться, что произвольная эллиптическая поляризация может быть разложена на сумму правой и левой круговых поляризаций

Соседние файлы в предмете Физика