Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Дифференциальные-уравнения-2го-поряд.doc
Скачиваний:
238
Добавлен:
13.02.2015
Размер:
9.73 Mб
Скачать

§7. Решение лнду 2-го порядка с постоянными коэффициентами со специальной правой частью.

Пусть в уравнении (6.1) коэффициенты постоянны, т.е. уравнение имеет вид:

f(x) (7.1)

где .

Рассмотрим метод отыскания частного решения уравнения (7.1) в случае, когда правая часть f(x) имеет специальный вид. Это метод называется методом неопределенных коэффициентов и состоит в подборе частного решения в зависимости от вида правой части f(x). Рассмотрим правые части следующего вида:

  1. f(x) , где – многочлен степени , причем некоторые коэффициенты, кроме , могут равняться нулю. Укажем вид, в котором надо брать частное решение в этом случае.

  1. Если число не является корнем характеристического уравнения для уравнения (5.1), то частное решение записываем в виде: , где – неопределенные коэффициенты, которые подлежат определению методом неопределенных коэффициентов.

Пример 1. Найти общее решение уравнения .

Решение.

Для уравнения составляем характеристическое уравнение: . Откуда получаем , . Следовательно, общее решение однородного уравнения есть . Правая часть заданного уравнения f(x) имеет специальный вид (случай 1), причем не является корнем характеристического уравнения, поэтому частное решение ищем в виде: , где – неопределенные коэффициенты. Найдем производные первого и второго порядков и подставим их в заданное уравнение:

.

Обе части сокращаем на и приравниваем коэффициенты при одинаковых степенях в левой и правой частях равенства

Из полученной системы уравнений находим: . Тогда , а общее решение заданного уравнения есть:

.

  1. Если является корнем кратности соответствующего характеристического уравнения, то частное решение ищем в виде:

,

где – неопределенные коэффициенты.

Пример 2. Решить уравнение .

Решение.

Соответствующее характеристическое уравнение имеет вид:

, откуда , . Тогда общее решение однородного уравнения есть: .

Правая часть заданного уравнения имеет специальный вид (случай 1). Так как является корнем характеристического уравнения кратности , то частное решение ищется в виде:

. Находим неопределенные коэффициенты методом, изложенным в примере 1. В результате получаем . Окончательно имеем следующее выражение для общего решения:

.

  1. Правая часть f(x) , где хотя бы одно из чисел и отлично от нуля. Укажем вид частного решения в этом случае.

  1. Если число не является корнем характеристического уравнения для уравнения (5.1), то частное решение ищем в виде:

,

где – неопределенные коэффициенты.

  1. Если число является корнем характеристического уравнения для уравнения (5.1), причем его кратность , то записываем частное решение в виде:

,

где – неопределенные коэффициенты.

Пример 3. Решить уравнение .

Решение.

Корни характеристического уравнения для уравнения будут , . Тогда общее решение этого лоду: .

Правая часть заданного в примере 3 уравнения имеет специальный вид: f(x) , где , а . Число является корнем характеристического уравнения кратности , поэтому частное решение лнду имеет вид: .

Для определения и находим , и подставляем в заданное уравнение:

.

Приводя подобные члены, приравнивая коэффициенты при , , получаем следующую систему: , отсюда .

Окончательно общее решение заданного уравнения имеет вид: .

  1. f(x) , где и - многочлены степени и соответственно, причем один из этих многочленов может равняться нулю. Укажем вид частного решения в этом общем случае.

  1. Если число не является корнем характеристического уравнения для уравнения (5.1), то вид частного решения будет:

, (7.2)

где – неопределенные коэффициенты, а .

  1. Если число является корнем характеристического уравнения для уравнения (5.1) кратности , то частное решение лнду будет иметь вид:

, (7.3)

т.е. частное решение вида (7.2) надо умножить на . В выражении (7.3) - многочлены с неопределенными коэффициентами, причем их степень .

Пример 4. Указать вид частного решения для уравнения

.

Решение.

Характеристическое уравнение имеет вид: . Его корни: , . Общее решение лоду имеет вид:

.

Правая часть заданного уравнения имеет специальный вид (случай 3): f(x) . Число является корнем характеристического уравнения кратности . Коэффициент при есть многочлен первой степени, а при - нулевой степени, поэтому степень многочленов с неопределенными коэффициентами надо брать . Итак, вид частного решения:

.

Далее коэффициенты могут быть определены по методу неопределенных коэффициентов.

Замечание. Если правая часть уравнения (7.1) есть сумма двух функций f(x) = f1(x) + f2(x), где каждая из f1(x), f2(x) имеют специальный вид (случаи 1-3), то частное решение подбирается в виде суммы: , где есть частное решение для уравнения с правой частью f1(x), а есть частное решение для уравнения с f2(x). Аналогично находятся частные решения в случае, когда правая часть есть алгебраическая сумма конечного числа функций специального вида, рассмотренного в случаях 1-3.