Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Дифференциальные-уравнения-2го-поряд.doc
Скачиваний:
238
Добавлен:
13.02.2015
Размер:
9.73 Mб
Скачать

§2. Линейное однородное дифференциальное уравнение с постоянными коэффициентами.

Это уравнение имеет вид:

, (2.1)

где - постоянные вещественные числа. Это уравнение имеет фундаментальную систему решений , определенную при всех и состоящую из степенных, показательных и тригонометрических функций. Соответствующее ей общее решение:

определено в области , т.е. во всем пространстве .

Построение фундаментальной системы решений лоду делается методом Эйлера, который состоит в том, что частное решение лоду ищется в виде , где - некоторое число, подлежащее определению. Подставляя эту функцию в уравнение (2.1), после сокращения на получим характеристическое уравнение:

Его корни называются характеристическими числами уравнения (2.1). Различают три случая.

  1. Все корни характеристического уравнения различны и вещественны. Обозначим их через . Тогда фундаментальной системой решений будут: , а общее решение имеет вид: .

  2. Все корни характеристического уравнения различны, но среди них имеются комплексные. Пусть – комплексный корень характеристического уравнения. Тогда тоже будет корнем этого уравнения. Этим двум корням соответствуют два линейно независимых частных решения: . Записав линейно независимые частные решения, соответствующие другим сопряженным парам комплексных корней и всем вещественным корням, получим фундаментальную систему решений. Линейная комбинация этих решений с произвольными постоянными коэффициентами даст общее решение уравнения (2.1).

  3. Среди корней характеристического уравнения имеются кратные. Пусть - вещественный k-кратный корень. Тогда ему соответствует линейно независимых частных решений вида , а в формуле общего решения – выражение вида . Если - комплексный корень характеристического уравнения кратности , то ему и сопряженному с ним корню той же кратности соответствуют линейно независимых частных решений вида:

В формуле общего решения этим корнем соответствует выражение вида:

.

Записав линейно независимые частные решения указанного выше вида, соответствующие всем простым и кратным вещественным корням, а также сопряженным парам простых и кратных комплексных корней, получим фундаментальную систему решений. Линейная комбинация этих решений с произвольными постоянными коэффициентами даст общее решение уравнения (2.1).

33