Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
mikra_lektsii.doc
Скачиваний:
191
Добавлен:
13.02.2015
Размер:
623.1 Кб
Скачать

Методы исследования в микробиологии

Различают следующие основные методы: микроскопический, микробиологический, экспериментальный, иммунологический.

1. Микроскопический - изучение микробов в окрашенном и неокрашенном (нативном) состоянии с помощью различных типов микроскопов. Метод позволяет определить форму, размеры, расположение, структурны элементы и отношение к окраске микробов. Иногда по характерным морфологическим особенностям можно определить вид микроба (грибов, простейших, некоторых бактерий).

2. Микробиологический - (бактериологический, культурный) - посев материала на питательные среды для выделения чистой культуры и определения ее вида (идентификации). Культурой в микробиологии называют совокупность микроорганизмов. Чистая культура - скопление микробов одного вида, выращенных на питательной среде. Штамм - чистая культура, выделенная из конкретного источника в определенное время, (например, штамм Shigella flexneri №8, выделенный от больного К. 20 сентября). Клон - генетически однородная чистая культура, полученная в результате бесполого размножения I клетки (используется при изучении микробных популяций, в генетических экспериментах).

3. Экспериментальный (биологический) - заражение микробами лабораторных животных. Метод позволяет:

- выделить чистую культуру микробов, плохо растущих на питательных средах;

- изучить болезнетворные свойства микроба;

- получать иммунобиологические препараты для специфической профилактики, диагностики и лечения.

4. Иммунологический (в диагностике инфекций) - изучение ответных специфических реакций макроорганизма на контакт с микробами.

В ответ на поступление микробных частиц (антигенов, АГ) иммунная система организма вырабатывает специфические белковые молекулы -

антитела (AT), способные вступать с данным антигеном в специфическое

взаимодействие с образование комплекса АГ+АТ. Метод основан на выявлении таких комплексов. Выделяют 2 разновидности метода: серологический метод и аллергический метод. Серологический метод основан на выявлении AT в крови или других жидкостях с помощью известных микробных АГ(диагностикумов). Аллергический метод основан на выявлении повышенной чувствительности (аллергии) к повторному поступлению в организм микробного аллергена (АГ). Наличие иммунного ответа (в виде AT или аллергии) свидетельствует о предшествующей встрече с этим микробом: возможно, человек переболел соответствующей инфекцией раньше, был вакцинирован или болен в настоящее время.

Часто по образованию комплекса АГ+АТ с известными AT определяют вид чистой культуры неизвестного микроба, полученной в ходе исследования микробиологическим методом (идентификация по антигенной структуре).

Лекция №2 морфология и физиология бактерий, грибов, простейших.

Световой микроскоп с иммерсионной системой

Для изучения микробов в микроскопе требуется увеличение примерно в 1000 раз. Поэтому используется микроскопы с иммерсионной системой ("иммерсио" – погружение) В состав иммерсионной системы входит иммерсионный объектив (х90) и иммерсионное масло, которым заполняют разрыв между изучаемый предметом и передней линзой иммерсионного объектива. Поскольку показатели преломления стекла и масла близки, это позволяет избежать потери световых лучей вследствие их отклонения, и, тем самым, создать оптимальную освещённость поля зрения. Необходимость в концентрации светового пучка обусловлена также и чрезвычайно малым диаметром передней линзы иммерсионного объектива. При микроскопировании необходимо помнить, что объективы "сухой системы" не предназначены для погружения в масло, которое может привести их в негодность. Микроскопия с иммерсионной системой позволяет изучать убитые микробы в окрашенном состоянии (их форму, размеры, взаимное расположение, строение бактериальной клетки) и дифференцировать одни микробы от других.

Способность микробов окрашиваться различными методами называют тинкториальными свойствами.

В некоторых случаях (изучение морфологии грибов, простейших, других относительно крупных объектов в живом неокрашенном состоянии) используется световой микроскоп с затемнённым полем зрения (объективы х40 или х8) Для микроскопии готовят препараты "раздавленная капля" или "висячая капля".

Измерение микробов.

Изучение морфологических признаков микробов (длина, ширина, форма) нередко проводят для определения их вида. Размеры клеточных микроорганизмов варьируют от долей микрометра (мкм, 10-6м) до нескольких десятков микрометров. Мелкие клетки бактерий имеют размеры 1-2, крупные от 8 до 12 мкм и более. Для измерений используют окуляр-микрометр (встроенную в окуляр прозрачную линейку).

Темнопольный микроскоп (ультрамикроскоп)

Особенностью этого микроскопа является наличие конденсора темного поля (параболоид-конденсатора), который концентрирует световой пучок и направляет его на исследуемый объект сбоку. Ввиду того, что прямые лучи отсекаются центральной диафрагмой конденсора, а косые лучи, выходящие по периферии диафрагмы, не попадают в объектив, ультрамикроскоп тлеет темное поле зрения. При освещении косыми лучами живых и неживых частиц, в т.ч. микробов, часть отраженных лучей попадает в объектив; при этом наблюдается яркое свечение частиц на темном фоне. Темнопольную микроскопию используют для изучения подвижности микробов, наблюдения очень тонких объектов (спирохет) в препарате "раздавленная капля".

Фазово-контрастный микроскоп

Эта разновидность светового микроскопа позволяет изучать структуру живых неокрашенных микробов (прозрачных объектов). При прохождении света через неокрашенные микробные клетки, в отличии от окрашенных, амплитуда световых волн не меняется, а происходит лишь их изменение по фазе, что не улавливается глазом человека. Сдвиг по фазе происходит при прохождении участков с большей оптической плотностью (рибосомы, нуклеоид). Специальные приспособления: фазовый конденсор и объективы с фазовыми кольцами позволяют преобразовать невидимые фазовые изменения в видимые амплитудные.

Люминесцентный микроскоп

Принцип работы этого микроскопа основан на явлении люминесценции. Для получения изображения объектов их обрабатывают флюорохромами, которые при возбуждающем облучении коротковолновой частью спектра светятся цветами с большей длиной волны (зеленым, оранжевым и др.). В люминесцентном микроскопе изучают как живые, так и убитые микробы (с "сухой" или иммерсионной системами). Люминесцентная микроскопия позволяет получить контрастное цветное изображение, обнаружить малое количество микробов, изучить их структуру и химический состав, использовать метод иммунофлюоресценции.

Электронный микроскоп

Этот прибор отличается от световых микроскопов значительно большей разрешающей способностью (около 0,001 мкм) за счет использования вместо света пучка электронов, а вместо стеклянных оптических - электромагнитных линз. В электронном микроскопе изучают вирусы, ультраструктуру убитых макроорганизмов.

Приготовление препарата для микроскопического исследования

Окраска по Граму.

I этап - приготовление мазка.

Предметное стекло обжигают в пламени газовой горелки. Восковым карандашом отмечают пределы будущего мазка в виде окружности диаметром 1-2 см. и кладут стекло на стол. Прокаленной петлёй наносят в середину кружка небольшую каплю стерильного изотонического раствора хлорида натрия (ИХН). Затем в эту каплю вносят небольшое количество культуры бактерий, тщательно эмульгируют и распределяют тонким слоем в пределах кружка. Мазки из бульонных культур готовят без предварительного нанесения ИХН.

2 этап - высушивание.

Стекло оставляют на воздухе до исчезновения влаги.

3 этап - фиксация.

Фиксацию проводят для того, чтобы убить микробы, прикрепить их к стеклу, повысить их восприимчивость к красителям. Для фиксации предметное стекло (мазком вверх) трижды накладывают на пламя горелки на 2-3 секунды с интервалом 4-6 секунд. Мазки из гноя, крови, мокроты, отечной жидкости фиксируют погружением в фиксирующие жидкости (ацетон, смесь Никифорова). Такая фиксация позволяет избежать грубых деформаций объекта исследования.

4 этап - окраска.

Различают простые и сложные (дифференцирующие) способы окраски. Простые способы позволяют судить о величине, форме, локализации и взаимном расположении клеток. Сложные способы позволяют установить структуру микробов и часто их неодинаковое отношение к красителям. Примером простых способов может служить окраска фуксином (1-2 минуты), метиленовым синим или кристалл-виолетом (3-5 минут), а сложных -окраска по Граму, Романовскому-Гимзе, Циль-Нильсену.

Дифференцирующий метод Грама.

После окраски этим методом одни бактерии, окрашиваются в темно-фиолетовый цвет (грамположительные, Гр+), другие - в бордово-красный (грамотрицательные, Гр-). Сущность этого способа окраски состоит в том, что Гр+ бактерии прочно фиксируют комплекс из генцианвиолета и йода, не обесцвечиваясь этанолом. Гр- бактерии после обесцвечивания докрашивают фуксином.

Гр+ бактерии кокки

Гр- бактерии кокки

стафилококки, стрептококки; палочки (спорообразующие): бациллы, клостридии; палочки (неспорообразующие): коринебактерии, микобактерии, актиномицеты

нейссерии, вейллонеллы; палочки (неспорообразующие): энтеробактерии, вибрионы;

извитые:

спириллы, спирохеты, кампилобактерии.

Схема окраски бактерий по Граму:

Гр+бактерии

Гр-бактерии

  1. фиолетовый цвет

  1. фиолетовый цвет

1.Генцианвиолет (2 минуты)

  1. фиолетовый цвет

  1. фиолетовый цвет

2.Р-р Люголя (1 мин.); закрепляет окраску.

  1. фиолетовый цвет

  1. обесцвечивание

3.Этанол+йод (30 сек.); избирательное обесцвечивание Гр-бактерий.

промывание водой

  1. фиолетовый цвет

  1. бордовый цвет

4.Фуксин (1 мин.); докрашивание Гр-бактерий.

промывание водой

После высушивания мазки готовы для микроскопии.

Основные формы бактерий

Шаровидные

Палочковидные

Извитые

микрококки (одиночные)

диплококки (пары)

стрептококки (цепочки)

тетракокки (4 клетки)

сарцины (тюки, пакеты)

стафилококки (гроздья)

собственно бактерии

спорообразующие

(бациллы, клостридии)

изогнутые палочки (вибрионы)

спириллы

спирохеты

кампилобактеры