Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Курс лекций по информатике _часть 1_

.pdf
Скачиваний:
89
Добавлен:
15.02.2015
Размер:
855.38 Кб
Скачать

21

Информатика делится на две части: теоретическую и прикладную информатику.

Теоретическая информатика рассматривает все аспекты разработки автоматизированных информационных систем: их проектирования, создания и использования не только с формально-технической, но и с содержательной стороны, а также комплекс экономического, политического и культурного воздействия на социальную динамику. В орбиту анализа теоретической информатики попадают и традиционные системы преобразования информации и распространения знаний: средства и системы массовой информации, система лекционной пропаганды, кино, театры, справочные службы и т.д. Но теоретическая информатика рассматривает их с определенной стороны – с позиций получения и использования информационного ресурса, форм и способов воздействия указанных систем на общественный прогресс, возможной их технологизации.

Теоретическая информатика изучает информационный ресурс, законы его функционирования и использования как движущей силы социального прогресса, а также общие, фундаментальные проблемы информационных технологий как исторического феномена, выводящего общество на новую ступень развития.

Прикладная информатика изучает конкретные разновидности информационных технологий, которые формируются с помощью специальных информационных систем (управленческих, медицинских, обучающих, военных, криминалистических и др.). Очевидно, что такие информационные технологии, как, например, управление (АСУП, АСУТП), проектные разработки (САПР) или криминалистика, имея общие черты, в то же время существенно различаются между собой. Разные операции и процедуры, различное оборудование, специализация критериев и показателей, разная степень замкнутости информационных контуров, даже разные информационные носители, то есть разные информационные среды, - все это становится объектом изучения конкретных функциональных и отраслевых информатик. Так рождаются ветви прикладной информатики, обслуживающие создание проектирующих систем, экспертных систем, диагностических комплексов, управляющих и других функциональных систем. Возникли также отраслевые ветви информатики, обслуживающие информатизацию разных сфер социальной и экономической практики: промышленность, науку, медицину, связь и т. д. Поэтому наряду с теоретической информатикой развиваются ее конкретные ветви: экономическая информатика, медицинская информатика, военная информатика и др.

3.3. Краткая история развития информатики

Информатика как наука стала развиваться с середины прошлого столетия, что связано с появлением ЭВМ и начинающейся компьютерной революцией.

Появление вычислительных машин в 50-е годы создало для информатики необходимую ей поддержку, или, иначе говоря, благоприятную среду для ее развития как науки. Всю историю информатики принято разбивать на два больших этапа: предыстория и история.

22

Предыстория информатики такая же древняя, как и история развития человеческого общества. В предыстории выделяют (весьма приближенно) ряд этапов. Каждый из этих этапов характеризуется по сравнению с предыдущим резким возрастанием возможностей хранения, передачи и обработки информации.

Начальный этап предыстории – освоение человеком развитой устной речи. Членораздельная речь, язык стал специфическим социальным средством хранения и передачи информации.

Второй этап – возникновение письменности. Прежде всего резко возросли (по сравнению с предыдущим этапом) возможности по хранению информации. Человек получил искусственную внешнюю память. Организация почтовых служб позволила использовать письменность и как средство для передачи информации. Кроме того, возникновение письменности было необходимым условием для начала развития наук (вспомним, например, Древнюю Грецию). С этим же этапом, по всей видимости, связано и возникновение понятия натуральное число. Все народы, обладавшие письменностью, владели понятием числа и пользовались той или иной системой исчисления.

Третий этап – книгопечатание. Книгопечатание можно смело назвать первой информационной технологией. Воспроизведение информации было поставлено на поток, на промышленную основу. По сравнению с предыдущим этот этап не столько увеличил возможности по хранению (хотя и здесь был выигрыш: письменный источник – часто один-единственный экземпляр, печатная книга – целый тираж экземпляров, а следовательно, и малая вероятность потери информации при хранении (вспомним "Слово о полку Игореве")), сколько повысил доступность информации и точность ее воспроизведения.

Четвертый и последний этап предыстории связан с успехами точных наук

(прежде всего математики и физики) и начинающейся в то время научно-технической революцией. Этот этап характеризуется возникновением такихмощныхсредств связи, как радио, телефон и телеграф, к которым по завершению этапа добавилось и телевидение. Кроме средств связи появились новые возможности по получению и хранению информации – фотография и кино. К ним также очень важно добавить разработку методовзаписиинформациинамагнитныеносители(магнитныеленты, диски).

С разработкой первых ЭВМ принято связывать возникновение информатики как науки, начало ее истории. Для такой "привязки" имеется несколько причин. Вопервых, сам термин "информатика" появился на свет благодаря развитию вычислительной техники, и поначалу под ним понималась наука о вычислениях (первые ЭВМ большей частью использовались для проведения числовых расчетов). Во-вторых, выделению информатики в отдельную науку способствовало такое важное свойство современной вычислительной техники, как единая форма представления обрабатываемой и хранимой информации. Вся информация, вне зависимости от ее вида, хранится и обрабатывается на ЭВМ в двоичной форме. Так получилось, что компьютер в одной системе объединил хранение и обработку числовой, текстовой (символьной) и аудиовизуальной (звук, изображение) информации. В этом состояла инициирующая роль вычислительнойтехникипривозникновениииоформленииновойнауки.

На сегодняшний день информатика представляет собой комплексную на- учно-техническую дисциплину. Информатика под своим названием объединяет

23

довольно обширный комплекс наук, каждая из которых занимается изучением одного из аспектов понятия информатика. Предпринимаются интенсивные усилия ученых по сближению наук, составляющих информатику. Однако процесс сближения этих дисциплин идет довольно медленно и создание единой и всеохватывающей науки об информации представляется делом будущего.

3.4. Понятие об информационном обществе

Информационное общество (ИО) имеет следующие основные признаки:

1.Большинство работающих в ИО (около 80%) занято в информационной сфере, то есть сфере производства информации и информационных услуг.

2.Обеспечены техническая, технологическая и правовая возможности доступа любому члену общества практически в любой точке территории и в приемлемое время к нужной ему информации (за исключением военных и государственных секретов, точно оговоренных в соответствующих законодательных актах).

3.Информация становится важным стратегическим ресурсом общества и занимает ключевое место в экономике, образовании и культуре.

Информатизацию общества следует понимать как создание и развитие информационной среды: комплекса условий и факторов, обеспечивающих наилучшие условия функционирования информационных ресурсов с учетом автоматизированных способов их переработки и использования в целях социального прогресса. Можно сказать и иначе: информатизация сводится к формированию информационных технологий и созданию условий для эффективного их использования в различных общественных системах.

Техническая база информатизации – это компьютерные и телекоммуникационные системы и сети, которые должны составлять "ядро" экономики, точнее – производственного аппарата будущего общества. Такой аппарат будет включать роботы и роботизированные производства, обрабатывающие центры, гибкие производственные системы, безлюдные участки, цехи, предприятия и, конечно, новые организационно-управленческие комплексы и системы связи.

К первоочередным проблемам информатизации следует отнести проблему готовности населения к переходу в информационное общество – психологическую проблему. Этот переход в настоящее время затрудняется низким уровнем информационной культуры населения, недостаточной компьютерной грамотностью, а отсюда и низкими информационными потребностями, а также отсутствием желания их развивать. Наблюдается невосприимчивость экономики управления на всех уровнях к результатам НТР и прежде всего в ионосфере. Психофизиологический аспект проблемы определяется совместимостью человека и новой информационной техники и технологии.

Следует еще раз подчеркнуть, что информатизация общества предполагает организацию компьютерного ликбеза населения, подготовку и переподготовку кадров – специалистов по ЭВМ и неспециалистов, то есть пользователей – профессионалов в области программирования и ВТ, компьютеризацию всех звеньев образова-

24

ния от начальной школы до вуза и системы послевузовского образования, создание огромной сети по переквалификации работников, формирование, особенно у молодежи, новой информационной культуры, расширение математического образования, преодоление барьеров на пути к ПЭВМ, машинным языкам и т.д.

Таким образом, ИО – это общество, структуры, техническая база и человеческий потенциал которого приспособлены для оптимального превращения знаний в информационный ресурс и переработки последнего с помощью перевода пассивных форм (книги, патенты, статьи и т.п.) в активные (модели, алгоритмы, программы, проекты). Но особенное значение для активизации информационного потенциала общества имеет создание современных баз знаний. Это достигается на путях качественного преобразования традиционных баз данных, рожденных ранними поколениями ЭВМ до появления искусственного интеллекта, в базы знаний.

3.5. Цель и задачи курса "информатика"

Информатика является естественнонаучной дисциплиной для всех технических направлений и специальностей.

Для направлений и специальностей, в которых информатика – непрофилирующая дисциплина, целью изучения является изложение фундаментальных понятий об информации, методах ее получения, хранения, обработке и передачи, а также роли информационного ресурса в информатизации общества.

В соответствии с требованиями Государственных образовательных стандартов высшего профессионального образования студенты техническихнаправлений и специальностей в результате изучения курса "Информатика" должны:

1) знать и уметь использовать:

базовые понятия информатики и вычислительной техники,предмет и основные методы информатики,историю развития информатики,

закономерности протекания информационных процессов в искусственных системах(втомчислевсистемахуправления),принципы и работу технических и программных средств;

2) иметь опыт:

использования возможностей вычислительной техники и программного обеспечения;

3) иметь представление:

об информатике как особом способе познания мира;об информационном ресурсе и его роли в информатизации общества, о

перспективах и этапах перехода к информационному обществу.

25

ЛЕКЦИЯ 4. ЭВМ КАК СРЕДСТВО ОБРАБОТКИ ИНФОРМАЦИИ

Первая в мире ЭВМ – ENIAC – была создана в 1946 г. в США.

На пути развития электронной вычислительной техники (начиная с середины 40-х годов) можно выделить четыре поколения больших ЭВМ, отличающихся элементной базой, функционально-логической организацией, конструктивнотехнологическим исполнением, программным обеспечением, техническими и эксплуатационными характеристиками, степенью доступа к ЭВМ со стороны пользователей. Смене поколений сопутствовало изменение основных техникоэксплуатационных и технико-экономических показателей ЭВМ, и в первую очередь таких, как быстродействие, емкость памяти, надежность и стоимость. При этом одной из основных тенденций развития было и остается стремление уменьшить трудоемкость подготовки программ решаемых задач, облегчить связь операторов с машинами, повысить эффективность использования последних. Это диктовалось и диктуется постоянным ростом сложности и трудоемкости задач, решение которых возлагается на ЭВМ в различных сферах применения.

Возможности улучшения технико-эксплуатационных показателей ЭВМ в значительной степени зависит от элементов, используемых для построения их электронных схем. Поэтому при рассмотрении этапов развития ЭВМ каждое поколение обычновпервуюочередьхарактеризуетсяиспользуемойэлементнойбазой.

4.1. История развития ЭВМ

Основным элементом ЭВМ первого поколения являлась электронная лампа, остальные компоненты электронной аппаратуры – это обычные резисторы. Конденсаторы, трансформаторы. Для построения оперативной памяти ЭВМ уже с середины 50-х годов начали применяться специально разработанные для этой цели элементы – ферритовые сердечники с прямоугольной петлей гистерезиса. В качестве устройств ввода-вывода сначала использовалась стандартная телеграфная аппаратура (телетайпы, ленточные перфораторы, трансмиттеры, аппаратура счетноперфорационных машин), а затем специально для ЭВМ были разработаны электромеханические устройства на магнитных лентах, барабанах, дисках и быстродействующие печатающие устройства.

Машины 1-го поколения имели внушительные размеры, потребляли большую мощность, имели сравнительно малое быстродействие, малую емкость оперативной памяти, невысокую надежность работы и недостаточно развитое программное обеспечение. В ЭВМ этого поколения были заложены основы логического построения машин и продемонстрированы возможности цифровой вычислительной техники.

На смену лампам в машинах второго поколения (в конце 50-х годов) пришли транзисторы. В отличие от ламповых ЭВМ транзисторные машины обладали бόльшими быстродействием, емкостью оперативной памяти и надежностью. Существенно уменьшились размеры, масса и потребляемая мощность. Значительным достижением явилось применение печатного монтажа. Повыси-

26

лась надежность электромеханических устройств ввода-вывода, удельный вес которых увеличился. Машины второго поколения обладали бόльшими вычислительными и логическими возможностями.

Особенность машин 2-го поколения – их дифференциация по применению. Появились машины для решения научно-технических и экономических задач, для управления производственными процессами и различными объектами (управляющие машины).

Наряду с техническим совершенствованием ЭВМ развиваются методы и приемы программирования вычислений, высшей ступенью которых является автоматическое программирование, требующее минимальных затрат труда математиковпрограммистов. Большое развитие и применение получили алгоритмические языки, существенно упрощающие процесс подготовки задач к решению на ЭВМ. С появление алгоритмических языков резко сократились штаты "чистых" программистов, посколькусоставлениепрограммнаэтихязыкахсталоподсилусамимпользователям.

Впериод развития и совершенствования машин второго поколения наряду с однопрограммными появились многопрограммные (мультипрограммные) ЭВМ. В отличие от однопрограммных машин, в которых программы выполняются только поочередно, в многопрограммных ЭВМ возможна совместная реализация нескольких программ за счет организации параллельной работы нескольких устройств машины.

Третье поколение ЭВМ (конец 60-х – начало 70-х годов) характеризуется широким применением интегральных схем. Интегральная схема представляет собой законченный логический функциональный блок, соответствующий достаточно сложной транзисторной схеме. Благодаря использованию интегральных схем удалось существенно улучшить технические и эксплуатационные характеристики машин. Этому способствовало также применение многослойного печатного монтажа.

Вмашинах 3-го поколения значительно расширился набор различных электромеханических устройств для ввода и вывода информации. Развитие этих устройств носит эволюционный характер: их характеристики совершенствуются гораздо медленнее, чем характеристики электронного оборудования.

Программное обеспечение машин 3-го поколения получило дальнейшее развитие, особенно это касается операционных систем. Развитые операционные системы многопрограммных машин, снабженных периферийными устройствами ввода-вывода с автономными пультами абонентов, обеспечивают управление работой ЭВМ в различных режимах: пакетной обработки, разделения времени, вопрос-ответ и др.

Вмашинах 3-го поколения существенно расширены возможности по обеспечению непосредственного доступа к ним со стороны абонентов, находящихся на различных, в том числе и значительных (десятки и сотни километров) расстояниях. Удобство общения абонента с машиной достигается за счет развитой сети абонентских пунктов, связанных с ЭВМ информационными каналами связи, и соответствующего программного обеспечения.

Например, в режиме разделения времени многим абонентам предоставляется возможность одновременного, непосредственного и оперативного доступа

27

к ЭВМ. Вследствие большого развития инерционности человека и машины у каждого из одновременно работающих абонентов складывается впечатление, будто ему одному предоставлено машинное время.

При разработке машин 3-го поколения применяются различные методы автоматизации проектирования. Основной объем документации, необходимой для монтажа, разрабатывается с помощью ЭВМ.

Для машин четвертого поколения (конец 70-х годов) характерно применение больших интегральных схем (БИС). Высокая степень интеграции способствует увеличению плотности компоновки электронной аппаратуры, повышению ее надежности и быстродействия, снижению стоимости. Это, в свою очередь, оказывает существенное воздействие на логическую структуру ЭВМ и ее программное обеспечение. Более тесной становится связь структуры машины и ее программного обеспечения, особенно операционной системы.

Отчетливо проявляется тенденция к унификации ЭВМ, созданию машин, представляющих собой единую систему. Ярким выражением этой тенденции является создание и развитие ЕС ЭВМ – Единой системы электронных вычислительных машин.

Таблица 4.1. Поколения ЭВМ

№ поколения,

Элементная

Особенности

Особенности

Организация

 

годы

база

 

архитектуры

программирования

работы

 

1-е,

1950-1955

Электронные

Схема

Фон-

Программирование в

Программистза

(Урал-2)

лампы

 

Неймана

 

командах ЭВМ

пультом управ-

 

 

 

 

 

 

 

ления

 

 

2-е,

1955-1960

Транзисторы

Схема

Фон-

Программированиена

Пакетный

ре-

(Минск, БЭСМ-

 

 

Неймана

 

алгоритмических

жим (за пуль-

4)

 

 

 

 

 

языках (Алгол, Фор-

том управления

 

 

 

 

 

 

тран)

оператор)

 

3-е, 1960-1965

Большие

инте-

Параллельная

Операционные систе-

Пакетный

ре-

(IBM/360,

гральные

схе-

работа

внеш-

мы

жим,

удален-

БЭСМ-6)

мы

 

них устройств

 

ные терминалы

4-е,

1960-…

Сверхбольшие

Параллельная

Распараллеливание

Пакетный

ре-

(CRAY-1, Эль-

интегральные

работа

не-

алгоритмов

жим,

удален-

брус, IBM PC)

схемы

 

скольких

про-

 

ныетерминалы,

 

 

 

 

цессоров,

сети

 

сети ЭВМ

 

 

 

 

 

ЭВМ

 

 

 

 

 

5-е,

1990-…

Сверхбольшие

 

 

 

 

 

 

(проект, Япо-

интегральные

Дружественность по отношению к пользователю

 

ния)

 

схемы

 

 

 

 

 

 

 

Промышленный выпуск первых моделей ЕС ЭВМ был начат в 1972 г., при их создании были использованы все современные достижения в области электронной вычислительной техники, технологии и конструирования ЭВМ, в области построения систем программного обеспечения. Объединение знаний и производственных мощностей стран-разработчиков позволило в довольно сжатые сроки решить комплексную научно-техническую проблему. ЕС ЭВМ представляла собой непрерывно развивающуюся систему, в которой улучшались техникоэксплуатационные показатели машин, совершенствовалось периферийное оборудование и расширялась его номенклатура.

28

Со второй половины 50-х годов кроме больших ЭВМ начали развиваться мини-ЭВМ, отличающимися меньшими функциональными возможностями главным образом из-за ограниченного набора команд и меньшей разрядности чисел, представляющих обрабатываемые данные.

С появлением в 1971 г. в США микропроцессоров начал развиваться но-

вый класс вычислительных машин – микро ЭВМ.

4.2. Основные характеристики ЭВМ

Первые электронные вычислительные машины (ЭВМ) появились в середине 40-х годов прошлого века. За это время микроэлектроника, вычислительная техника и вся индустрия информатики стали одними из составляющих мирового научнотехнического прогресса. Влияние вычислительной техники на все сферы деятельности человека продолжает распространяться вширь и вглубь. В настоящее время ЭВМ используются не только для выполнения сложных расчетов, но и в управлении производственными процессами, в образовании, здравоохранении, экологии и т.д. Это объясняется тем, что ЭВМ способны обрабатывать любые виды информации: числовую, текстовую, табличную, графическую, видео, звуковую.

Электронная вычислительная машина – это комплекс технических и про-

граммных средств, предназначенный для автоматизации подготовки и решения задач пользователей. Под пользователем понимают человека, в интересах которого проводится обработка данных на ЭВМ. В качестве пользователя могут выступать заказчики вычислительных работ, программисты, операторы. Как правило, время подготовки задач во много раз превышает время их решения.

Требования пользователей к выполнению вычислительных работ удовлетворяются специальным подбором и настройкой технических и программных средств. Обычно эти средства взаимосвязаны и объединяются в одну структуру.

Структура – совокупность элементов и их связей. Различают структуры технических, программных и аппаратно-программных средств. Выбирая ЭВМ для решения своих задач, пользователь интересуется функциональными возможностями технических и программных модулей (как быстро может быть решена задача, насколько ЭВМ подходит для решения данного круга задач, какой сервис программ имеется в ЭВМ, возможности диалогового режима, стоимость подготовки и решения задач и т.п.). При этом пользователь интересуется не конкретной технической и программной реализацией отдельных программных модулей, а общими вопросами организации вычислений. Последнее включается в понятие архитектуры ЭВМ, содержание которого достаточно обширно.

Архитектура ЭВМ – это многоуровневая иерархия аппаратно-программных средств, из которых строится ЭВМ. Каждый из уровней допускает многовариантное построение и применение. Конкретная организация уровней определяет особенности структурногопостроенияЭВМ.

ДетализациейархитектурногоиструктурногопостроенияЭВМзанимаютсяразличные категорииспециалистоввычислительнойтехники.Инженеры-схемотехникипроектируютот- дельныетехническиеустройстваиразрабатываютметодыихсопряжениядругсдругом.Сис-

29

темные программистысоздаютпрограммыуправлениятехническимисредствами,информационного взаимодействия между уровнями, организации вычислительного процесса. Про- граммисты-прикладники разрабатывают пакеты программ более высокого уровня, которые обеспечиваютвзаимодействиепользователейсЭВМинеобходимыйсервисприрешенииими своихзадач.Перечисленныеспециалистырассматриваютпонятиеархитектурывболееузком смысле.Длянихнаиболееважныеструктурныеособенностисосредоточенывнаборекоманд ЭВМ,разграничивающемаппаратныеипрограммныесредства.

Сами же пользователи ЭВМ, которые обычно не являются профессионалами в области вычислительной техники, рассматривают архитектуру через более высокоуровневые аспекты, касающиеся их взаимодействия с ЭВМ, определяющих ее структуру:

технические и эксплуатационные характеристики ЭВМ (быстродействие и производительность, показатели надежности, достоверности, точности, емкости оперативной и внешней памяти, габаритные размеры, стоимость технических и программных средств, особенности эксплуатации и др.);характеристики и состав функциональных модулей базовой конфигурации ЭВМ; возможность расширения технических и программных средств; возможность изменения структуры;состав программного обеспечения (ПО) и сервисных услуг (операцион-

ная система или среда, пакеты прикладных программ, средства автоматизации программирования).

Архитектура ЭВМ охватывает широкий круг проблем, связанных с построением комплекса аппаратных и программных средств и учитывающих множество факторов. Среди этих факторов важнейшими являются: стоимость, сфера применения, функциональные возможности, удобство эксплуатации, а одним из главных компонентов архитектуры являются аппаратные средства. Основные компоненты архитектуры можно представить в виде следующей схемы:

Архитектура ЭВМ

Компоненты архитектуры

 

Вычислительные и логи-

 

 

 

Аппаратные

 

 

Программное обес-

 

 

 

ческие возможности

 

 

 

средства

 

 

 

печение

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Система команд

 

 

 

Структура ЭВМ

 

 

 

Операционная сис-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

тема

 

 

Форматы данных

 

 

 

Организация

 

 

 

Языки программи-

 

 

 

 

 

 

 

 

 

 

 

 

памяти

 

 

 

рования

 

 

Быстродействие

 

 

 

Организация

 

 

 

Прикладное ПО

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ввода-вывода

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Принципы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

управления

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

Архитектуру вычислительного средства следует отличать от его структуры. Структура вычислительного средства определяет его конкретный состав на некотором уровне детализации (устройства, блоки, узлы и т.д.) и описывает связи внутри средства во всей их полноте. Архитектура же определяет правила взаимодействия составных частей вычислительного средства, описание которых выполняется в той мере, в какой это необходимо для формирования правил их взаимодействия. Она регламентирует не все связи, а наиболее важные, которые должны быть известны для более грамотного использования данного средства.

Важнейшими характеристиками ЭВМ являются быстродействие и производительность. И хотя эти характеристики тесно связаны, тем не менее их не следует смешивать. Быстродействие характеризуется числом определенного типа команд (чаще сложений и вычитаний – так называемых "коротких" операций), выполняемых ЭВМ за одну секунду. Производительность – это объем работ (например, число стандартных программ), выполненный ЭВМ в единицу времени.

Другой важнейшей характеристикой ЭВМ является емкость запоминающих устройств. Она измеряется количеством структурных единиц информации, которые одновременно можно разместить в памяти. Этот показатель позволяет определить, какой набор программ и данных может быть одновременно размещен в памяти.

Наименьшей структурной единицей информации является бит – одна двоичная цифра. Как правило, емкость памяти оценивается в более крупных единицах измерения – байтах (байт равен восьми битам). Следующими единицами измерения служат:

1 Кбайт = 210 байт = 1024 байт; 1 Мбайт = 210 Кбайта = 220 байта;

1 Гбайт = 210 Мбайта = 220 Кбайта = 230 байта.

Обычно отдельно характеризуют емкость оперативной памяти и емкость внешней памяти. Современные персональные ЭВМ могут иметь емкость оперативной памяти, равную от 256 Мбайт до 4 Гбайт. Этот показатель очень важен для определения, какие программные пакеты и их приложения могут одновременно обрабатываться в машине.

Емкость внешней памяти зависит от типа носителя. Так, емкость одной дискеты составляет 1,2; 1,4 и 2,88 Мбайта в зависимости от типа дисковода и характеристик дискет. Емкость оптических дисков CD и DVD соответственно 200 Мбайт и 1,4 Гбайт для дисков диаметром 8 см и от 700 Мбайт для CD и 4,7 Гбайт (для однослойных дисков) и 8,5 Гбайт (для двухслойных дисков) – для дисков диаметром 12 см. Емкость сменных дисков(такназываемаяфлэш-память)–впределахот16Мбайт(такиедискиужеснятыс производства) до 64 Гбайт. Подобныедиски,атакжеразличноготипакартыпамяти(XD, SD, Mini-SD, Micro-SD, Memory Stick), используются как просто отдельные накопители, так и в цифровых фото- и видеокамерах, диктофонах, мобильных телефонах и т.п. Емкость жесткого диска может варьироваться от нескольких Гбайт до 320 и более Гбайт. Емкость внешней памяти характеризует объем программного обеспечения и отдельных программных продуктов, которые могут устанавливаться в ЭВМ. Например, для установки операционной средыWindows2000требуетсяобъемпамятижесткогодисканеменее600Мбайтинеменее64МбайтоперативнойпамятиЭВМ.