Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Чалий-Мед.і біол. фізика.doc
Скачиваний:
5458
Добавлен:
23.02.2015
Размер:
5.83 Mб
Скачать

Медична і біологічна фізика Підручник для студентів вищих медичних закладів освіти III - IV рівнів акредитації.

Автори:

О.В. Чалий - член-кореспондент АПН України, доктор фізико-математичних

наук, професор, завідувач кафедри медичної і біологічної фізики Національного

медичного університету імені О.О. Богомольця;

Б.Т. Агапов - доктор біологічних наук, доцент;

А.В. Меленєвська - кандидат біологічних наук, доцент;

М.І. Мурашко - кандидат технічних наук, доцент;

Н.Ф. Радченко - кандидат хімічних наук, доцент;

Н.В. Стучинська - кандидат фізико-математичних наук, доцент;

Я.В. Цехмістер - кандидат фізико-математичних наук, доцент.

У підручнику викладені найважливіші аспекти медичної і біологічної фізики, медичної апаратури, математичної обробки медико-біологічної інформації та застосувань комп'ютерів у медицині. Містить лабораторні і практичні роботи, приклади розв'язків основних типів задач. Структура і зміст підручника повністю адаптовані до вимог нової програми з медичної і біологічної фізики, яка затверджена Міністерством охорони здоров'я України.

Книга призначається перш за все для студентів вищих медичних закладів освіти III - IV рівнів акредитації, а також викладачів, науковців і всіх, хто цікавиться сучасною медичною та біологічною фізикою.

Рецензенти:

Л.А. Булавін — член-кореспондент НАН України, професор, декан фізичного

факультету Київського Національного університету ім. Т. Шевченка;

В.М. Сисоєв — професор кафедри молекулярної фізики Київського Національного

університету ім. Т. Шевченка;

Ю.С. Сіиекоп - професор, завідувач кафедри фізичної і біомедичної електроніки

Національного технічного університету України "Київський політехнічний інститут";

М.І. Шут - член-кореспондент АПН України, професор, завідувач кафедри методики

викладання фізики Національного педагогічного університету ім. М.П. Драгоманова.

ПЕРЕДМОВА

Сучасний етап розвитку вищої медичної освіти висуває нові вимоги до змісту, методики та організації викладання багатьох дисциплін у вищому медичному закладі. Це пов­ною мірою стосується викладання дисципліни "Біофізика, інформатика і медична аппаратура". Останнім часом багато досягнень медицини значною мірою пов'язані з успіхами фізики, біології, комп'ютерної техніки та інформатики, ме­дичного приладобудування. Ця важлива обставина викликає необхідність одержання студентами вищих медичних на­вчальних закладів України загальних і спеціальних знань в галузі медичної і біологічної фізики.

На жаль, досі не існувало україномовного підручника з медичної і біологічної фізики для студентів вищих медич­них закладів України, в якому в досить простій і водночас стислій формі подавалися б ті питання, що містяться в затвердженій Головним управлінням навчальних закладів МОЗ України програмі дисципліни "Біофізика, інформатика і медична аппаратура".

Підручник, що пропонується, має своєю метою саме ліквідувати цей недолік. Основу для нього складають лекції та лабораторний практикум, що викладалися протягом багатьох років для студентів Київського медичного інсти­туту - нині Національного медичного університету імені О.О. Богомольця. Слід зауважити, що при плануванні змісту цього підручника був врахований той факт, що в 1993 році у видавництві "Вища школа" вийшов українською мовою підручник "Основи інформатики" (автори - О.В. Ча­лий, В.А. Дяков, 1.1. Хаїмзон) для студентів вищих медич­них навчальних закладів України. Саме цей підручник разом з тим, що тримає в своїх руках наш шановний читач, становлять ту необхідну основу, на якій студенти вищих медичних навчальних закладів України мають опанувати складну та водночас дуже цікаву і важливу для освіти лікаря XXI століття дисципліну "Біофізика, інформатика і медична аппаратура".

РОЗДІЛ 1. БІОМЕХАНІКА, БІОРЕОЛОГІЯ ТА ГЕМО­ДИНАМІКА

"Механічний рух у тілі тварини підпоряд­ковується тим самим законам, що і рух тіл неживих, і тому очевидно, що питання про те, яким саме чином і у якій мірі рух крові по судинах залежить від м 'язових та пружних сил серця і судин, зводиться до проблем, які належать до вузько спеціальних розділів гід­равліки".

Томас Юнг

Біологічні тканини складні за своєю будовою, неод­норідні за своїм складом, їх структура і властивості визна­чаються тими функціями, які вони виконують в живих ор­ганізмах. В морфології виділяють декілька типів тканин -епітеліальну, тканини внутрішнього середовища (кров і лім­фу), сполучну, м'язову, нервову. Всі вони, як правило, ма­ють клітинну будову, складну структуру, і всім цим ткани­нам притаманний механічний рух у тій чи іншій мірі, почи­наючи з внутрішньоклітинних мікрорухів скорочувальних білкових ниток до макрорухів окремих органів та систем. Деякі з тканин призначені для виконання опорно-рухової функції і в процесі життєдіяльності підлягають значним механічним навантаженням. Різні форми механічного руху в живих системах вивчає біомеханіка, основи якої як науки про закони механічних рухів у біологічних системах запо­чатковані за часів Арістотеля, Леонардо да Вінчі, Бореллі, Галілея, Декарта, Гука, Ейлера, Бернуллі, Юнга, Гельм-гольця, Пуазейля та ін. (Зауважимо, що останні четверо бу­ли професорами медицини).

При вивченні деяких механічних властивостей біологічних тканин зручно уявляти їх у вигляді суцільних середовищ, не розглядаючи їх мікроструктуру і абстрагуючись від їх клітинної будови. Середовище може розглядати­ся як суцільне, якщо відстані, на яких змінюються його усе­реднені властивості (наприклад, густина, в'язкість тощо), значно перевищують розміри частинок (у нашому випадку -клітин, формених елементів), з яких складається середови­ще. У цьому випадку реальну тканину можна поділити на ряд елементарних об'ємів, розміри яких значно перевищу­ють розміри клітини, і до кожного з них застосовувати за­кони механіки з метою описання різних механічних явищ, таких як плин чи деформація середовища.

Розділ механіки, що вивчає плин і деформацію суціль­них середовищ, зветься реологією. Вивчення цих рухів у біологічних системах становить задачу біореології. Розгля­немо деякі важливі поняття реології.

Виділимо у суцільному середовищі елементарний об'єм ΔV з масою Am. Сили F, що діють у суцільному середовищі, можна віднести до одиниці маси (об'єму) чи одиниці площі поверхні.

Позначимо силу, що діє на одиницю маси речовини, через f = F/Δm; аналогічним способом визначається і ве­личина сили, що діє на одиницю об'ємуf=F/ΔV - так зва­на об'ємна сила. Наприклад, об'ємні сили інерції і тяжіння відповідно дорівнюють f= Δm -a/ΔV = ρ -a; f = Δm -g/ΔV= ρ*g.

З цих виразів випливає, що величини об'ємних сил не залежать від розмірів і мас тіл, а визначаються лише усе­редненими властивостями тіл (густиною ρ) і характеристи­ками їх механічного руху (прискоренням а). Вони діють одночасно на всі елементарні об'єми речовини, їх зручно використовувати для опису плину і деформації реальних су­цільних середовищ. Так, наприклад, використання цих сил дозволяє в зручній формі записати рівняння руху різних рідин, в тому числі і крові. (Слід підкреслити, що описуючи рух суцільних середовищ, використовують не лише об'ємні сили, а й об'ємну густину енергії w = ΔW/ΔV, яка характе­ризує величину енергії, що припадає на одиницю об'єму).

Різні ділянки середовища можуть взаємодіяти між со­бою по поверхнях розділу, в цьому випадку зручно кори­стуватися поверхневими силами, тобто силами, що діють на одиницю площі поверхні. Нехай дві ділянки тіла І і II ме­жують між собою поверхнею АВ (мал. 1.1).

Мал. 1.1. Сили, які діють на поверхні розділу середовищ.

Виділимо на поверхні АВ малу площу dS, на яку під деяким кутом до нормалі діє сила dF (мал. 1.1 а). У цьому випадку характеристикою поверхневих сил є величина на­пруження а, яка дорівнює силі, що діє на одиницю площі: а = dF/dS [Ж/и2]. Зручно ввести дві складові а по відношенню до вектора п нормалі до елемента поверхні dS: нормальну складову ап, що діє перпендикулярно до площи­ни, і тангенціальну ап спрямовану по дотичній до поверхні dS (мал. 1.16). Саме перша складова містить в собі скалярну величину - тиск Р, що дорівнює відношенню величини си­ли до величини площі поверхні: Р = F/S.

Іншим прикладом дії поверхневих сил є явище поверх­невого натягу, яке характеризується коефіцієнтом поверх­невого натягу а. Цей коефіцієнт чисельно дорівнює силі dF, яка діє на одиницю довжини довільного контура dL на поверхні і спрямована по дотичній до поверхні (мал 1.1 в):

а= =dF/dL[H/M].

Поверхневі сили використовують для опису явищ де­формації, плину в'язких середовищ, пластичності, повзу­чості, поверхневого натягу тощо, які спостерігаються при функціонуванні біологічних тканин.

Соседние файлы в предмете Биофизика