Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

02 BOPs / Woods D.R 2008 rules-of-thumb-in-Engineering-practice (epdf.tips)

.pdf
Скачиваний:
0
Добавлен:
12.03.2024
Размер:
3.47 Mб
Скачать

Appendix B:

Dimensionless Groups

Sometimes the dimensionless group is describing heat transfer and sometimes mass transfer. For example, the Biot number and the Peclet number have forms for both mass and heat transfer.

The symbol [=] means “has dimensions of”.

Some terms, such as reaction rate and gaseous mass transfer coefficient, can be expressed in different units. For a dimensionless number to be dimensionless, the units used for the terms must ensure that that happens.

Dimensionless

 

Word definition

Equation

Range

So what?

number

 

 

 

 

 

 

 

 

 

 

 

Archimedes no.,

Ar

(inertial-gravity/

(Re2/Fr) q dimen-

1 to 107

Fluidization: Ar: 1 to

= Ga (Dr/r)

 

viscous2) q density

sionless density

 

106. For CFB, 1–100;

 

 

ratio

ratio =

 

for transported bed,

 

 

= Re (gravitational/

(rG2 Dp3 g)/m2) q

 

0.5–120; for fixed bed,

 

 

viscous)

((rsrG)/rG)

 

106–107;

 

 

 

 

 

Particle settling/flui-

 

 

 

 

 

dization

Arrhenius no.

Arr

relative activation

E/R T

gas solid

Reactions: Use: to tell

 

 

energy

E = activation

reactions:

which is the control-

 

 

 

energy, kJ/mol

5 to 40.

ling mechanism in a

 

 

(molar activation

 

liquid

reaction: external

 

 

energy)/

 

solid

mass transfer (Arr

 

 

(potential energy of

 

reactions:

very small), transition,

 

 

fluid)

 

5 to 40

pore diffusion, transi-

 

 

 

 

 

tion, kinetic regime

 

 

 

 

 

(Arr very large).

 

 

 

 

 

Determines rates of

 

 

 

 

 

chemical reactions

 

 

 

 

 

 

Rules of Thumb in Engineering Practice. Donald R. Woods

Copyright c 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

ISBN: 978-3-527-31220-7

362 Appendix B: Dimensionless Groups

Dimensionless

 

Word definition

Equation

Range

So what?

number

 

 

 

 

 

 

 

 

 

 

 

Biot no. (for heat

BiH

external heat trans-

hD/k

0.001–10

Unsteady state heat

transfer)

 

fer to particle or

 

 

transfer. high Bi =

 

 

solid/internal con-

 

10–1000

internal conduction

 

 

duction;

 

 

controls

 

 

internal thermal

 

 

 

 

 

resistance/surface

 

 

 

 

 

resistance

 

 

 

Biot no. (for mass

BiD

convective trans-

kG D/D

100–

 

transfer)

 

port/molecular

where kG [=] L/T

100 000

 

 

 

transport

 

 

 

 

 

 

kG D/D

 

 

 

 

Mass transfer at in-

D = diam.

 

 

 

 

terface/mass trans-

D = diffusivity

 

 

 

 

fer in solid

 

 

 

Biot mass/

BiD/

Biot heat

BiH

Bird no.

Bir

mass of solids

 

 

within a e 0.1 den-

 

 

sity variation from

 

 

the critical or cut

 

 

density used to se-

 

 

parate solids from

 

 

solids

Bi ratio = Bi mass/

Bi heat = [Dc/DT] internal/[Dc/DT]

external

ranges from 10–500 for gas–solid reactions meaning that heat transfer is the controlling resistance externally and mass transfer resistance controlled internally

Reactions: range 10–1000 for gas-solid reactions

Bi ratio = 10 to 104 for gas solid

= 10–4 to 10–1 for liquid solid. To identify the controlling mechanism in a gas– solid reaction: external mass transfer, transition, pore diffusion, transition, kinetic regime

Need density distri-

I 15 then

Solid-solid

bution data for the

jigs,

classification:

feed

tables,

0–7 easy separation

 

sluices

7–10 moderate

 

OK. i 15

10–15 difficult

 

use DMS

15–20 very difficult

 

 

20–25 exceedingly

 

 

difficult

 

 

i25 usually not

 

 

possible

 

 

 

Appendix B:

Dimensionless Groups

363

 

 

 

 

 

 

 

 

 

 

 

 

 

Dimensionless

 

Word definition

Equation

Range

So what?

number

 

 

 

 

 

 

 

 

 

 

 

 

Bodenstein no.

Bd

Flow velocity along

Ivi D/D or height

 

Diffusion in a reactor.

= Pe for mass

 

a length/axial mix-

of catalyst bed

 

RTD. If approaches T

transfer

 

ing along the

Ivi/Daxial

 

there is negligible

 

 

length;

 

 

backmixing and plug

= Re Scaxial

 

Special case of Pe

 

 

flow occurs; Bd = 0;

 

 

no. for mass trans-

 

 

then complete mix-

 

 

fer describing diffu-

 

 

ing. Bd/2 = no. of

 

 

sion in a packed bed

 

 

ideally mixed cells in

 

 

 

 

 

a catalyst bed of

 

 

 

 

 

height H

Boltzmann no = Thring no.

 

 

 

 

 

Bond no.

Bo

gravitational forces/

rgDp2/g

0.05–1

Coating, surface

(Eotvos no.)

 

surface tension

where D = diameter

 

shape of curved fluid

 

 

forces

of the tube or dis-

 

surface:

 

 

 

tance between

 

Bo I 0.5 for slot

 

 

Often called the

plates or diameter

 

coating

 

 

Eotvos no., Eo,

of particle.

 

Bo i 0.5 for dip

 

 

when applied to

 

 

coating

 

 

particles or drops

(rLrG) gDp2/g

 

For coating, usually

 

 

 

where Dp = drop

 

Bo I 1.

 

 

 

diameter

 

Radii of curvature of

 

 

 

 

 

meniscus, the shape

 

 

 

 

 

is not affected by sur-

 

 

 

 

 

face tension if Bo

 

 

 

 

 

large; shape is not af-

 

 

 

 

 

fected by hydrostatic

 

 

 

 

 

pressure if Bo is

 

 

 

 

 

small.

 

 

 

 

 

Bo large when surface

 

 

 

 

 

forces low.

 

 

 

 

 

Surface effects impor-

 

 

 

 

 

tant in particulate

 

 

 

 

 

systems: Bo I 1.

 

 

 

 

 

Atomization, solvent

 

 

 

 

 

extraction, trickle bed

 

 

 

 

 

reactors

Boussinesq no.

Bq

inertial forces/grav-

Ivi/(2 g rH)0.5

 

Waves in an open

see Froude no.

 

itational forces

where rH = hydrau-

 

channel

 

 

 

lic radius

 

 

 

 

 

 

 

 

 

 

364 Appendix B: Dimensionless Groups

Dimensionless

 

Word definition

Equation

Range

So what?

number

 

 

 

 

 

 

 

 

 

 

 

Bulk/film volume

d+

relative volume of

 

1–10 000

Reactions: gas–liquid;

ratio

 

bulk liquid to the

 

 

characteristics of gas–

 

 

mass transfer film

 

 

liquid contactors.

 

 

at the surface

 

 

Thin film = 1; bubble

 

 

 

 

 

column 4000 to

 

 

 

 

 

10 000

Capillary no.

Ca

viscous forces/sur-

mv/g viscosity,

0.01–10

Two phase flow: in

 

 

face tension forces

velocity, surface

 

packed beds.

 

 

 

tension

 

Free surface flows: as

 

 

 

 

 

in coating.

 

 

 

 

 

Coating: For forward

 

 

 

 

 

roll. coating, predicts

 

 

 

 

 

stagnation line down-

stream of gap;

For forward roll coating: predicts onset of ribbing at higher values (as a function of gap/diameter)

For premetering: predicts dynamic contact angle u proportional to Ca0.22 but independent at Ca I 5 q 10–3. For slot coating: Minimum wet thickness as a function of Ca: for values of Ca of 0.1 to 0.8. There is a critical Ca above which the minimum wet thickness is constant; the critical Ca is linear function of gap; at 1000 mm gap, critical Ca = 0.7

 

 

 

Appendix B:

Dimensionless Groups

365

 

 

 

 

 

 

 

 

 

 

 

 

 

Dimensionless

 

Word definition

Equation

Range

So what?

number

 

 

 

 

 

 

 

 

 

 

 

 

DamkohlerI no.

DaI

(chemical reaction

equation depends

0.1–100

Reactions: If Da I

 

 

rate [=] 1/T)/bulk

on the kinetics:

 

critical value, a flame

 

 

mass flow rate

r* D/Ivi

 

is extinguished. For

 

 

or

where r* = reaction

 

first order reactions

 

 

(time for fluid to

rate [=] 1/T

 

and CSTRs in series,

 

 

flow a distance)/

D = length

 

most reaction occurs

 

 

(time to complete

r* = kA Cn-1

 

in first reactors if Da

 

 

the reaction)

for zero order

 

i 1; for second order

 

 

 

= kA D/(Ivi [A])

 

Da i 20

 

 

 

where [A] = bulk

 

 

 

 

 

 

concentration of

 

 

 

 

 

 

reactant

 

 

 

 

 

 

for first order :

 

 

 

 

 

 

= kA D/Ivi

 

 

 

 

 

 

for second order:

 

 

 

 

 

 

= [A] kA D/Ivi

 

 

 

DamkohlerII no.

DaII

(chemical reaction

(eq. depends on

 

Reactions: large

 

 

rate in flowing gas-

reaction kinetics)

 

values for high tem-

 

 

eous system,

r* D2/D

 

perature reactors;

 

 

[=] 1/T)/(molecular

 

 

approaches 0 for low

 

 

diffusion rate)

for first order:

 

temp. bioreactors. For

 

 

 

 

 

CSTR Da = 1 conver-

 

 

 

kA D2/D

 

sion I 10 %

 

 

 

 

 

= 10 conversion i

 

 

 

 

 

90 %

 

 

 

 

 

 

Da small = reaction

 

 

 

 

 

controlled by mass

 

 

 

 

 

transfer

 

 

 

 

 

For reactive distilla-

 

 

 

 

 

tion, Da 10 to 20

DamkohlerIII no.

DaIII

(heat liberated via

DH r* D/(cp Ivi T)

 

Reactions and heat

 

 

chemical reaction)/

 

 

transfer

 

 

(bulk transport of

where DH = heat

 

 

 

 

 

heat)

liberated/unit mass

 

 

 

 

 

 

T = temperature

 

 

 

 

 

 

above the datum

 

 

 

 

 

 

r* = reaction rate [=]

 

 

 

 

 

 

1/T

 

 

 

DamkohlerIV no.

DaIV

(heat liberated via

r DH r* D2/(kT)

 

Reactions and heat

 

 

chemical reaction)/

 

 

transfer

 

 

(conductive or

 

 

 

 

 

 

molecular heat

 

 

 

 

 

 

transfer)

 

 

 

 

 

 

 

 

 

 

 

366 Appendix B: Dimensionless Groups

Dimensionless

Word definition

Equation

Range

So what?

number

 

 

 

 

 

 

 

 

 

Damkohler heat

Daheat heat liberated/inter-

DHreact R/a h Tinlet

 

Reactors

 

phase heat transfer

a = area/vol. of

 

 

 

coefficient

catalyst

 

 

 

 

h = interphase heat

 

 

 

 

transfer coefficient

 

 

 

 

R = ideal gas

 

 

 

 

constant

 

 

Darcy coefficient:

4f

(head loss/velocity

2 g hf D/(v2 L)

= 4 Fanning

 

head) q (diameter/

where hf = heat loss

friction factor

 

length)

due to friction

Deborah number

De

Relaxation time of

De increases with

 

 

system/flow charac-

increase in speed of

 

 

teristic time

coater

 

 

characteristic re-

 

 

 

laxation time of the

 

 

 

coating liquid or

 

 

 

dispersion/charac-

 

 

 

teristic residence

 

 

 

time in the process

 

 

 

flow or time of ob-

 

 

 

servation

 

Deborah number

 

rate of drying/rate

 

for drying

 

of stress relaxation

 

Fluid flow in pipes/ fittings/conduits

Coating: High De makes processing in high speed blade coater problematic De II 1 equilibrium thermodynamics; any work done isothermally is immediately dispersed as heat.

De ii 1 work done is stored in material Viscoelastic behavior

Drying of coating: when De is high, coating cracks upon drying crack formation in coating

Elasticity, surface

ES

viscous/change in

RT GT/m Ivi

0–110

Coating

 

 

capillary force be-

 

 

 

 

 

cause of surface

(1/m Ivi)

 

 

 

 

tension lowering

(dg/d ln G)

 

 

 

 

because of surfac-

 

 

 

 

 

tant

 

 

 

Elasticity, Gibbs

E

surface tension var-

(dg/d ln G)

 

 

surface

 

iation/surface con-

 

 

 

 

 

centration

 

 

 

Eotvos no. related to Bond no.

 

 

 

fanning friction

 

wall shear stress/

2 twall/(r v2)

0.005 in

Fluid flow in pipes/

factor = Darcy/4

 

velocity head

 

turbulent

conduits; relatively

 

 

 

 

flow

constant for

 

 

 

 

 

Re i 2000.

 

 

 

 

 

16/Re in laminar flow

 

 

 

 

 

 

 

 

 

Appendix B:

Dimensionless Groups

367

 

 

 

 

 

 

 

 

 

 

 

 

 

Dimensionless

 

Word definition

Equation

Range

So what?

number

 

 

 

 

 

 

 

 

 

 

 

 

Fourier no.

Fo

time (thermal con-

kt/r cp D2

0.1–20

Heat transfer: unstea-

 

 

duction/inertial

 

Usually

dy. Extent to which

 

 

heat)

 

0.1–1.5

heating or cooling pe-

 

 

 

 

 

netrates into a solid

Froude no.

Fr

inertial forces/

v2/gD

 

Coating; surface con-

see also Bous-

 

gravitational forces

where D = length

 

figuration in swirling

sinesq no., Bq

 

 

 

 

flows.

 

 

 

N2D/g

 

Mixing: vortex forma-

 

 

 

where N = rpm

 

tion for a free surface

 

 

 

D = impeller dia-

 

in a mixing tank

 

 

 

meter

 

 

 

Froude no.

Fr*

inertial forces/

(v2/gD) (r/Dr)

10–7 to

Gas holdup in bubble

density weighted =

 

gravitational forces

 

10–4

column

Fr (r/Dr)

 

 

 

 

 

 

Galileo no.

Ga

intertial-gravity/

(Re2/Fr) =

see Ar

Fluidization, circu-

= Re x(gravita-

 

viscous2

(rG2 Dp3 g)/m2)

 

lation of fluids

tional/viscous)

 

 

 

 

 

 

Graetz =

Gz

thermal capacity of

F cp/kD

10–104

Heat transfer; coating

Re Pr (D/D)

 

the fluid/conduc-

where F = mass

 

manifold

 

 

tion heat transfer

flow

 

 

 

 

 

 

D = length of heat

 

 

 

 

 

 

transfer path

 

 

 

Grashof no.H

GrH

free convection

D3 g r2 b DT/m2

 

Heat transfer under

 

 

buoyancy force/

where

 

gravity flow; natural

Ga (b DT)

 

viscous force

b DT = density dif-

 

convection

similar to Ar

 

= Re q (buoyancy

ference caused by

 

 

 

 

 

forces/viscous

thermal difference.

 

 

 

 

 

force)

b =thermal expan-

 

 

 

 

 

= inertia-buoyance/

sion

 

 

 

 

 

viscous force2

 

 

 

 

Grashof no.D

GrD

 

D3 g r Dr/m2

 

Mass transfer under

 

 

 

where

 

gravity flow

 

 

 

Dr =density differ-

 

 

 

 

 

 

ence caused by con-

 

 

 

 

 

 

centration differ-

 

 

 

 

 

 

ence

 

 

 

Gr Pr

 

 

 

 

= 1000 heat transfer

 

 

 

 

 

by conduction

 

 

 

 

 

= 104 to 106 = heat

 

 

 

 

 

transfer by natural

 

 

 

 

 

convection

 

 

 

 

 

 

 

368 Appendix B: Dimensionless Groups

Dimensionless

Word definition

Equation

Range

So what?

number

 

 

 

 

Hatta no.

Ha

reaction in the film/

equation depends

 

 

reaction in the bulk

on the kinetics

 

 

for gas–liquid reac-

(–n1 k1 D1L )0.5/k1L

 

 

tions

 

 

 

 

or { (DA kmn (2/(m +

 

 

 

1)[A]* (—1) [B]bn)0.5 }/

 

 

 

kL

 

 

 

or l/tanh l

 

 

 

where

 

 

 

l = D(kn [B]n–1/DA)1/2

 

 

 

m order of the reac-

 

 

 

tion of reactant A

 

 

 

n order of the reac-

 

 

 

tion of reactant B

 

 

 

kmn = volumetric

 

 

 

rate constant for re-

 

 

 

action of orders m

 

 

 

and n between re-

 

 

 

agents A and B.

 

 

 

D = diffusion path

 

 

 

length = (m2/r2 g)1/3

 

 

 

for packed column

For gas–liquid reactions: Ha I 1: regime 1: reaction occurs exclusively in bulk and is controlled by either chem. reaction, k (regime 1) overall temp effect positive or (regime 2) diffusion across the liquid film controls, kL slow reaction; overall temp effect negative regime Ha II 1 or kinetic regime; reaction is controlled by film diffusion. kinetics control

regime 3 fast reaction: is so fast that occurs wherever A is reaction entirely in film: diffusion and reaction in film with negligible reaction in the bulk Ha ii 1

and Ha II {[B]bulk/eB

[A]bulk } (DB/DA) 0.5;

mass transfer through liquid film (increasing the temp. decreases the overall rate unless increasing the temp. increases the solubility)

regime 4: instantaneous reaction in both film and bulk Ha ii

{[B]bulk/eB [A]bulk } (DB/DA) 0.5 effect of

temperature increase is negligible

 

 

 

Appendix B:

Dimensionless Groups

369

 

 

 

 

 

 

 

 

 

 

 

 

 

Dimensionless

 

Word definition

Equation

Range

So what?

number

 

 

 

 

 

 

 

 

 

 

 

 

j-factor for heat

jH

St Pr2/3 = Nu/

(h/r cp Ivi)

0.001–

Heat transfer: for tur-

transfer

 

(Re Pr0.3)

[cp m/k]2/3

0.02

bulent 0.003 decreas-

 

 

 

 

 

ing to 0.001

j-factor for mass

jD

StD Sc2/3

(kG/Ivi)[m/rD]2/3

0.002–

Mass transfer: for gas

transfer

 

 

 

0.007

or liquid 15 I Re I

 

 

 

where kG [=] L/T

 

1500

 

 

 

 

 

 

jH = 1.2 jD

Lewis no.

Le

Sc/Pr: mass trans-

k/cp r D

0.0001–

Mass and Heat trans-

 

 

fer/heat transfer

 

0.11

fer: Material proper-

 

 

properties

 

 

ties ratio of mass

 

 

= thermal diffusiv-

 

 

transfer relative to

 

 

ity/molecular diffu-

 

 

heat transfer

 

 

sivity

 

 

 

 

Luikov no.

Lu

mass diffusivity/

kG Dr cp/k

 

 

thermal diffusivity

where D = length

 

 

 

kG [=] L/T

Mach no.

M

velocity/sonic

v/vsonic

 

 

velocity

for ideal gas

 

 

 

v/[(cp/cv) (RT/M)]0.5

Marangoni no.

Ma

surface tension gra-

thermal [dg/dT]

 

 

dient forces/viscous

[dT/dy] d2/[m r cv/k]

 

 

stablizing forces

d = film thickness; k

 

 

 

= thermal conduc-

 

 

 

tivity

 

 

 

[dg/dT] DT d/

 

 

 

[m r cv/k]

Mass and Heat transfer

Compressible flow, gas flow through a nozzle, aircraft speed

Coating surface defectsBenard cells; cells can occur for Ma i 80; roll cells for d I 1 mm, usually always occur because of Ma effects and not Rayleigh (density driven effects). For layers d I 2 mm, convection cells appear at Rayleigh and Marangoni values I the critical values listed above.

Mass transfer: indicative of when mass transfer might be increased by rolls cells

Margoulis no. see Stanton no.

Nusselt no.

Nu

total heat transfer/

h D/k

10–1000

Heat transfer

= St Re Pr

 

conductive or mo-

 

 

 

 

 

lecular heat transfer

 

 

 

 

 

 

 

 

 

370 Appendix B: Dimensionless Groups

Dimensionless

Word definition

Equation

Range

So what?

number

 

 

 

 

 

 

 

 

 

Nusselt no.AB, NuAB, see Sherwood No.

Ohnesager no.

Z

viscous/(inertial q

m/(r D g)0.5

for G–L:

Spray, drop breakup

= We/Re

 

surface tension)0.5

 

10–3 to 10

water = 0.001 to 0.01;

 

 

 

 

 

castor oil = 5

Peclet no. = Re Pr

PeH

bulk heat transport

D/F cp/kA;

 

Heat transfer: forced

for heat transfer in

 

by convection/

Ivi D r cp/k

 

convection

pipes

 

transport by con-

 

 

 

 

 

duction – diffusion

 

 

 

Peclet no.

PeD

total momentum

Ivi D/Dax

 

Mass transfer, mixing.

= Re Sc

 

transfer/(molecular

where D = diam. of

 

For turbulent, homo-

for mass transfer

 

mass transfer axial

tube

 

geneous fluid

in pipe flow

 

direction)

 

 

Re i 104 Peaxial = 2;

 

 

 

 

 

Peradial = 600; Pe = 0

 

 

 

 

 

means complete mix-

 

 

 

 

 

ing; Pe = T means

 

 

 

 

 

plug flow

Peclet no.

PeD

(total momentum

Ivi Dp/Daxial

0.01–105

Mixing. For packed

= Rep Sc for mass

 

transport)/(molecu-

 

 

beds Re i 10; Pe axial =

transfer in packed

 

lar diffusion in axial

 

 

2–3; Pe radial = 10.

beds

 

direction)

Ivi Dp/Dradial

 

Flow through a cata-

 

 

 

 

 

lyst bed of particles of

(Bodenstein no.,

 

 

or for packed beds

 

diameter, Dp, and

for axial)

 

(total momentum

D = Dp diam. of

 

depth H. Recom-

 

 

transport)/(molecu-

particle

 

mended range of H/

 

 

lar diffusion in

 

 

Dp is 5 to 50. If 50

 

 

radial direction)

 

 

then plug flow.

For packed columns PeL

= 0.4–2; PeG = 4–20. If a column H I 0.2– 0.3 m, then backmix causes problems