Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

02 BOPs / Woods D.R 2008 rules-of-thumb-in-Engineering-practice (epdf.tips)

.pdf
Скачиваний:
0
Добавлен:
12.03.2024
Размер:
3.47 Mб
Скачать

D.4 Detailed Equipment Cost Data Based on Equipment Type 391

1000–12 000. L+M = 1.22. L/M = 0.2. Factors: including foundations and basin, q 1.7–3.0; including distribution piping, q 1.3. Factors to adjust for different approach temperatures, wet bulb temperatures and cooling range vary from 0.4–2.0.

Section 3.8

Thermal Energy: Direct Contact G–L Quenchers

For spray tower and baffle tower, see Section 5.2. For tray and packing see Section 4.2.

Section 3.9

Thermal Energy: Direct Contact G–L Condensers

Direct contact: barometric condensers: c/s multijet spray type excluding hot well. FOB cost = $22 000 for a water flow rate = 33 L/s with n = 0.6 for the range 3.3–600. FOB cost = $36 000 for a body diameter = 1 m with n = 1.37 for the range 0.1–2.5 m. L+M* = 1.6. L/M = 0.17. Alloy FOB factors: c/s q 1.00; cast iron q 1.5; rubber lined q 2.0.

Section 3.10

Thermal Energy: G–G Thermal Wheels and Pebble Regenerators and Regenerators

Thermal wheel: (Ljungstom heater) Low temperature operation I 400 hC aluminum or asbestos coated including wheel, wheel housing, drive and motor designed for a face velocity = 3.5 m/s for each side of a balanced flow exchanger but excluding air chambers, fans and reheat coil. FOB cost = $50 000 for a nominal gas flow rate = 5 Ndm3/s with n = 0.50 for the range 1–15. L+M* = 1.6. L/M = 0.17. Alloy FOB factors: aluminum q 1.00; 316 s/s or enamel for temperatures I 400 hC q 1.75.

Thermal wheel: (Ljungstom heater) High temperature operation I 800 hC, for conditions described above. FOB cost = $175 000 for a nominal gas flow rate = 5 Ndm3/s with n = 0.75 for the range 2–10. L+M* = 1.6. L/M = 0.17.

Section 3.11

Thermal Energy: Refrigeration

Refrigeration, package unit: mechanical vapor recompression, c/s, evaporator temperature 4.4 hC with centrifugal compressor, condensers, insulation, instrumentation, field erection excluding cooling tower. Package delivered and field erected cost = $800 000 at a refrigeration capacity = 1000 kW with n = 0.77 for the range 20–5000 kW. L+M = 1.3. L/M = 0.82. Evaporator temperature factors: 4.4 hC, q 1.00; 9.9 hC, 0.94; –1.1 hC, q 1.08; –6.6 hC, q 1.4; –17.7 hC, q 1.8; –29 hC, q 3.0; –40 hC, q 4.0; –51 hC, q 7.0; –62 hC, q 15.0. Factor: including cooling tower, q 5.5.

392Appendix D: Capital Cost Guidelines

Section 3.12

Thermal Energy: Steam Generation and Distribution

Boiler, fired, package: gas–oil fired, water tube with fire tube for smaller size, 1.5 MPa with boiler, burner, fan, deaearator, chemical injection, stack, integral

piping,

instruments. FOB

cost

$500 000 for saturated

steam

generated =

2.7 kg/s

with n = 0.92 for

the

range 1–10; cost = $2

850 000

for saturated

steam generated = 14 kg/s with n = 0.35. L+M = 1.35. L/M = 0.13.

Boiler, field erected: gas–oil fired, water tube, 1.5 MPa, excluding distribution facilities and housing. Delivered and field erected cost = $8 000 000 at saturated steam generated = 22 kg/s with n = 0.59. L+M* = 1.2–1.8. L/M = 0.26. Factors: 3.5 MPa, q 1.02; 4.2 MPa, q 1.08; 5.6 MPa, q 1.15; 7.0 MPa, q 1.25; 10 MPa, q 1.3. Housed, q 1.20; including distribution facilities, q 2.5.

Section 3.13

High Temperature Heat Transfer Fluids

Dowtherm furnace: package unit including firing. FOB cost = $110 000 for heat absorbed = 280 kJ/s with n = 0.61 for the range 40–2800.

Section 3.14

Tempered Heat Exchange Systems

Tempered glycol system for heating: package unit: c/s, with low pressure steam to heat the circulating 50 % glycol solution from 35 to 65 hC including heat exchangers, tank, TEFC motors, circulating pump, integral piping, valves, fittings, instrumentation excluding foundation and hookup. BM cost = $93 000 for a circulation rate = 10 L/s with n = 0.23 for the range 1.5–20.

Tempered glycol system for cooling, package unit: c/s, with cooling water to cool the circulating 50 % glycol solution with heat exchangers, tank, TEFC motors, circulating pump, integral piping, valves, fittings, instrumentation excluding foundation and hookup. BM cost = $170 000 for a heat load of 1 MW with n = 0.23 for the range 0.3–1 and n = 0.53 for the range 1–3.

Section 4.1

Evaporation

External short tube, vertical exchanger, natural circulation: including vapor piping, barometric condenser, vacuum equipment, integral piping, condensate receivers. FOB cost $80 000 at 5 m2 heat transfer area, n = 0.50 for the range 2–20. L+M* = 1.6–1.9. L/M = 0.34–0.7. Alloy cost factors: c/s q 1.00; copper q 1.3; s/s q 2.3; nickel alloy q 2.8; titanium q 6.6. Evaporator body only q 0.3.

External short tube, vertical exchanger, forced circulation: including vapor piping, barometric condenser, vacuum equipment, integral piping, condensate receivers, circulating pump and drive. FOB cost $1 200 000 at 100 m2 heat transfer area,

D.4 Detailed Equipment Cost Data Based on Equipment Type 393

n = 0.74 for the range 20–500. L+M* = 1.6–1.9. L/M = 0.35. Alloy cost factors: c/s q 1.00; monel clad q 1.8; nickel clad q 1.5; copper q 1.3; s/s q 2.3; nickel alloy q 2.8; titanium q 6.6.

Internal calandria, horizontal short tube: including all auxiliaries vapor piping, barometric condenser, vacuum equipment, integral piping, condensate receivers. FOB cost $205 000 at 45 m2 heat transfer area, n = 0.47 for the range 10–900. L+M* = 1.6–1.9. L/M = 0.35. Alloy cost factors: c/s q 1.00; cast iron with copper tubes q 1.0; lead lined q 2.0; copper q 1.3; s/s q 2.3; nickel alloy q 2.8; titanium q 6.6.

Internal calandria, vertical short tube: including vapor piping, barometric condenser, vacuum equipment, integral piping, condensate receivers. FOB cost $220 000 at 45 m2 heat transfer area, n = 0.55 for the range 10–600. L+M* = 1.6–1.9. L/M = 0.35. Alloy cost factors: c/s q 1.00; cast iron with copper tubes q 1.0; lead lined q 2.0; copper q 1.3; s/s q 2.3; nickel alloy q 2.8; titanium q 6.6.

Long tube, rising or falling film: including vapor piping, barometric condenser, vacuum equipment, integral piping. FOB cost $350 000 at 100 m2 heat transfer area, n = 0.68 for the range 1–10 000. L+M* = 2.5. L/M = 0.35. Alloy cost factors: c/s q 1.00; cast iron body with copper tubes q 2.0; rubber lined with karbate tubes q 3; nickel q 10; copper q 3.5. Evaporator only q 0.85.

Agitated falling film: including thermal section, separator, drive but excluding auxiliaries and vacuum equipment. FOB cost $80 000 at 0.5 m2 heat transfer area, n = 0.36 (range 0.1–1 m2); $350 000 at 10 m2 with n = 0.62 for the range 1–25. L+M* = 1.4–2.5. L/M = 0.35. Alloy cost factors: 304 s/s q 1.00; 316 s/s q 1.1. Including vacuum equipment q 1.5.

See Section 4.6 for mechanical recompression applied to crystallization.

Section 4.2

Distillation

Column, vertical: FOB, 1 MPa, cylindrical, dished ends, usual nozzles, access hole, support, excluding internals, c/s, $100 000 for vessel mass of 8 Mg mass, n = 0.58 range 0.4–200 Mg; for the product of (height, m) (diameter, m)1.5 = 20, n = 0.81 for range 0.5–1000. Pressure adjustment: 1 MPa q 1.0; 5 MPa q 1.6; 10 MPa, q 2.3; 20 MPa, q 4.35; 30 MPa q 6.1; 40 MPa q 7.8. Alloy factors: c/s q 1.0; 316 s/s q 3.6; 316 s/s/clad q 2.5; 304 s/s q 2.75; 304 s/s clad q 2.5; 310 s/s q 3.25; 410 s/s q 2.1; nickel q 8; monel q 6.5; monel clad q 4.0; Hastalloy q 15; titanium q 8; titanium clad q 4.2. L+M* = 3. L/M = 0.5.

Tray columns, c/s column with c/s sieve trays on 0.6 m spacing. FOB units with trays shopinstalled complete with some nozzles but no access holes or tooling up fee. FOB cost $545 000 at the product of (column height, m) (diameter, m)1.5 = 100 with n = 0.57 for the range 4–150 m2.5. L+M* = 2.95. L/M = 0.43–0.58. Tray columns, c/s column with c/s sieve trays on 0.6 m spacing. FOB units with trays shop-installed with nozzles, access holes and tooling up charge. FOB cost $545 000 at the product of (column height, m) (diameter, m)1.5 = 100 with n = 0.53 for the range 4–150 m2.5. L+M* = 2.95. L/M = 0.43–0.58.

394 Appendix D: Capital Cost Guidelines

Tray columns, 316 s/s column with 316 s/s sieve trays on 0.3 m spacing. FOB units with trays shop-installed complete with some nozzles but no access holes or tooling up fee. FOB cost $234 000 at the product of (column height, m) (diameter, m)1.5 = 14 with n = 0.78 for the range 5–14 m2.5 and n = 0.93 for the range 14–100. L+M* = 1.78. L/M = 0.28–0.38. Factor, tray spacing, 0.3 m, q 1.00; 0.6 m, q 1.5.

Tray columns, 316 s/s column with 316 s/s sieve trays on 0.3 m spacing. FOB units with trays shop-installed complete with nozzles, no access holes and tooling up fee. FOB cost $360 000 at the product of (column height, m) (diameter, m)1.5 = 22 with n = 0.52 for the range 5–22 m2.5 and n = 0.96 for the range 22–100. L+M* = 1.78. L/M = 0.28–0.33. Factor, tray spacing, 0.3 m, q 1.00; 0.6 m, q 1.5.

Trays stack: c/s trays, supports, fittings, shop fabrication and installation at 0.6 m tray spacing into a column but excluding the cost of the column and tooling up fee but accounting for the penalty charge based on the number of trays ordered. Installed cost = $135 000 at the product of (stack height, m) ( diameter, m)1.5 = 100 with n = 0.78 for the range 1.5–250 m2.5.

Trays stack: c/s trays, supports, fittings, shop fabrication and installation at 0.6 m tray spacing into a column and including tooling up fee and accounting for the penalty charge based on the number of trays ordered but excluding the cost of the column. Installed cost = $167 000 at the product of (stack height, m) ( diameter, m)1.5 = 66 with n = 0.39 for the range 1.5–66 m2.5 and n = 0.78 for the range 66–250.

Trays stack: 316 s/s as above but excluding tooling up fee. Installed cost = $420 000 at the product of (stack height, m) ( diameter, m)1.5 = 87 with n = 0.76 for the range 2.5–200 m2.5.

Trays stack: 316 s/s as above and including tooling up fee. Installed cost = $420 000 at the product of (stack height, m) ( diameter, m)1.5 = 87 with n = 0.54 for the range 2.5–87 m2.5 and n = 0.76 for the range 87–200.

Tray, individual sieve tray, c/s, single pass, installed in column excluding the cost of the column and for orders of i 40 trays. Installed cost per tray = $2500 at tray diameter = 2.13 m with n = 0.80 for the range 0.9–2.13 and n = 2.01 for the range 2.13–4.6 m. Factors: c/s, q 1.00; copper, q 3.2; 304 s/s, q 2.5; 316 s/s, q 2.7; monel, q 9.9. Type of pass, single pass, q 1.00; double pass, q 1.2. Type of tray, sieve, q 1.00; turbogrid, q 1.0; valve, q 1.4; trough, q 1.4; bubble cap, q 2.4. Size of the order, i 40, q 1.0; 20–40, q 1.2; 10–20, q 1.5; 5–10, q 1.7; 1 tray, q 2.5. Trays installed in the shop, q 1.00; in the field, q 1.2. Tooling up fee, $50 000 US.

Packed columns, c/s column with c/s Raschig rings including support trays, holddown plates, distributor and redistributor trays including column with some nozzles but no access holes. FOB cost $ 28 000 at the product of (column height, m) (diameter, m)1.5 = 2.8 with n = 0.65 for the range 0.5–2.8 m2.5 and n = 0.9 for the range 2.8–85. L+M* = 2.9. L/M = 0. 4.

Packed columns, 316 s/s column with 316 s/s Pall rings including support trays, hold-down plates, distributor and redistributor trays including column with some nozzles but no access holes. FOB cost $ 1 425 000 at the product of (column

D.4 Detailed Equipment Cost Data Based on Equipment Type 395

height, m) (diameter, m)1.5 = 65 with n = 0.90 for the range 0.5–75 m2.5. L+M* = 1.8. L/M = 0.3.

Packing: The cost of the column can be determined from Section 10.1. The internals and packing can be estimated from the following prices for different types of packing. To this cost needs to be added the cost of support trays (one every 8 m for ceramic packings and one every 10 m for metal, hold down tray, redistribution tray and liquid distributor tray). These trays can be costed as sieve trays.

Pall rings: c/s, FOB cost/m3 = $2500 for a diameter = 2.5 cm with n = – 0.64 for the range 2.5–7.6. L+M* = 2.2. L/M = 0.43–0.58. Alloy cost factors: c/s q 1.00; 316 s/s q 3.3.

Pall rings: polypropylene, FOB cost/m3 = $1800 for a diameter = 2.5 cm with n = –0.95 for the range 2.5–7.6. L+M* = 2.2. L/M = 0.43–0.58.

Pall rings: aluminum, FOB cost/m3 = $3300 for a diameter = 2.7 cm with n = –0.26 for the range 2.5–7.6. L+M* = 2.2. L/M = 0.43–0.58.

Intalox: porcelain, FOB cost/m3 = $2400 for diameter = 2.5 cm with n = – 0.4. L+M* = 2.2. L/M = 0.43–0.58. Alloy cost factors: porcelain q 1.00; stoneware q 0.94.

Intalox: polypropylene, FOB cost/m3 = $1500 for diameter = 5 cm with n = –0.95 for the range 2.5–9. L+M* = 2.2. L/M = 0.43–0.58. Alloy cost factors: polypropylene, q 1.00; polyethylene, q 0.95.

Intalox: PVC, FOB cost/m3 = $2500 for diameter = 5 cm with n = – 0.71 for the range 2.5–7.5. L+M* = 2.2. L/M = 0.43–0.58.

Intalox: Kynar, FOB cost/m3 = $1500 for diameter = 5 cm with n = – 0.53 for the range 2.5–7.5. L+M* = 2.2. L/M = 0.43–0.58.

Superintalox = intalox q 1.10.

Raschig rings: porcelain, FOB cost/m3 = $2200 for diameter = 2.5 cm with n = –0.5 for the range 2.5–7.5. L+M* = 2.2. L/M = 0.43–0.58. Alloy cost factors: porcelain q 1.0; stoneware q 1.00; c/s q 1.58; 316 s/s q 6.1; carbon q 2.35.

Beryl saddles: porcelain, FOB cost/m3 = $3500 for a diameter = 2.5 cm with n = –1.00 for the range 1.2–5. L+M* = 2.2. L/M = 0.43–0.58. Alloy cost factors: porcelain q 1.00; stoneware q 1.24.

Hypac: c/s, FOB cost/m3 = $2500 at diameter = 5 cm with n = – 0.58 for the range 2.5–9. Alloy cost factors: c/s q 1.00; 316 s/s q 2.5.

Molecular distillation: constructed with s/s and glass including diffusion pump and nominal auxiliaries but excluding degassifier. FOB cost= $275000 for a capacity = 0.03 kg/s with n = 0.81 for the range 0.006–0.3. L+M* = 1.6. L/M = 0.43– 0.58. Factors: including degassifier, q 1.43.

Section 4.3

Freeze Concentration

Cost the individual components, wash column from Section 10.1; refrigeration unit, Section 3.12, pumps and compressors, Sections 2.1 and 2.3 and heat exchangers, Section 3.3.

396 Appendix D: Capital Cost Guidelines

For a complete process to concentrate fruit juices, or coffee, the TM cost = $7 000 000 for a processing capacity = 1 kg/s with n = 0.48 for the range 0.03–7 kg/s.

Section 4.4

Melt Crystallization

Cost as a process vessel, Section 10.1.

Section 4.5

Zone Refining

Cost as a process vessel, Section 10.1.

Section 4.6

Solution Crystallization

Batch: evaporative cooling, c/s with vacuum equipment, mixer, central draft tube (if desired). FOB cost = $250 000 for a working volume = 7.5 m3 with n = 0.68 for the range 0.2–30 or for a crystal capacity of 0.55 kg/s with n = 0.68 for the range 0.2–25. L+M* = 1.6–2.6. L/M = 0.25–0.26. Alloy cost factors: c/s, q 1.00; rubber lined, q 1.27; clad 316 s/s, q 2.4.

Forced circulation growth type: c/s with pump, drive, heat exchanger, vacuum equipment and crystallizer. FOB cost $675 000 for a crystal capacity = 1 kg/s with n = 0.53 for the range 0.1 –10. L+M* = 1.7–2.7. L/M = 0.38. Alloy cost factors: c/s, q 1.00; cast iron, q 1.0; rubber lined, q 0.75; s/s, q 3.0; copper alloy, q 1.3; nickel alloy, q 2.6; titanium, q 6.0.

Draft tube MSMPR: c/s, FOB cost $700 000 for a crystal capacity = 1 kg/s with n = 0.63 for the range 0.5–20. L+M* = 1.75. L/M = 0.38. Alloy cost factors: c/s q 1.00; cast iron q 1.0; rubber lined q 0.75; s/s q 3.0; copper alloy q 1.3; nickel alloy q 2.6; titanium q 6.0.

CPR: Oslo, Krystall: c/s, vapor body, retention chamber, heating element, recirculation pump, TEFC motor and drive, condenser, ejectors and integral piping. FOB cost = $1 000 000 for a crystal capacity = 1 kg/s with n = 0.62 for the range 0.1– 100. FOB cost = $720 000 for a heat transfer area = 93 m2 with n = 0.57 for the range 10–100. L+M* = 1.75–2.75. L/M = 0.38. Alloy cost factors: c/s, q 1.00; rubber lined, q 1.2; s/s, q 2.1; copper alloy, q 1.3; nickel alloy, q 2.6; titanium, q 6.0. Factors: Oslo and Krystal type, q 1.00; flash growth type, Pachuca, q 0.7.

Scraped surface crystallizer: c/s excluding motor and drive. FOB cost $50 000 for a cooling area = 10 m2 with n = 0.79 for the range 7–60. L+M* = 1.6. L/M = 0.25. Triple effect forced circulation: c/s. FOB cost $2 230 000 for a crystal capacity = 2.5 kg/s with n = 0.63 for the range 0.75–10. L+M* = 1.75. L/M = 0.38. Alloy cost factors: c/s q 1.00; cast iron q 1.0; rubber lined q 0.75; s/s q 3.0; copper alloy q 1.3; nickel alloy q 2.6; titanium q 6.0.

D.4 Detailed Equipment Cost Data Based on Equipment Type 397

Mechanical vapor recompression: c/s. FOB cost $3 400 000 for a crystal capacity = 2.5 kg/s with n = 0.75 for the range 0.75–10. L+M* = 1.6. L/M = 0.38.

Section 4.7

Precipitation

Cost as a process vessel, Section 10.1.

Section 4.8

Gas Absorption

See Section 4.2 for cost guidelines for packed and tray columns. See Section 10.1 for pressure vessels.

For scrubbers, see Section 5.2.

Section 4.9

Gas Desorption/Stripping

See Section 4.8.

Vacuum type: c/s including vessel, pump, motor, drive and vacuum equipment. FOB cost $70 000 for a liquid flow rate = 12.6 L/s with n = 0.43 for the range 2–60. L+M* = 1.7. L/M = 0.4.

Forced draft packed: c/s with fan , motor, tower, catch basin, level controllers, two s/s pumps and motors. FOB cost $40 000 for a liquid flow rate = 6.3 L/s with n = 0.45 for the range 2–60. L+M* = 1.7. L/M = 0.4.

Gas stripping, forced draft, packed, ammonia: Installed cost = $5 000 000 for a liquid flow rate = 200 L/s with n = 0.38 for the range 40–200 and n = 0.88 for range 200–4000 L/s.

Gas stripping packed or tray column; ammonia, column only with internals. FOB cost = $550 000 at design flow rate of sour water = 12 L/s with n = 0.53 for the range 3–55 L/s. L+M* = 3.0. Factors: tower only, q 1.00; tower plus reboiler, condensers, accumulators, shutdown tankage, piping, q 4.2. Retrofit, q 1.6.

Edible oil deodorizing vessel: with preheater, deaerator, booster and steam ejectors with dry condensers, polishing filters and all MPI. FOB 304 s/s cost $2 500 000 for a feed rate = 2 kg/s with n = 0.7 for the range 0.6–10. L+M* = 1.8. L/M = 0.30.

Section 4.10

Solvent Extraction, SX

Gravity spray tower: see Sections 10.1 and 5.2.

Tray and packed columns: see Section 4.2.

Stirred column extractor (Oldshue–Rushton, Scheibel) 304 s/s including motor and variable speed drive. FOB cost $380 000 at the product of (height, m) (diameter, m)1.5 = 10 with n = 0.66 for the range 0.5–55. L+M* = 2.0; L/M = 0.48.

398 Appendix D: Capital Cost Guidelines

Pulsed plate column, 316 s/s tower and plates at 100 mm separation including pulsing mechanism and necessary auxiliaries excluding pump, piping, foundations. FOB cost = $425 000 at the product of (height, m) (diameter, m)1.5 = 10 with n = 0.81 for the range 0.5–100. L+M* = 2.0. L/M = 0.48.

Reciprocating plate column 316 s/s tower and plates including reciprocating mechanism, explosion-proof motor and drive excluding pump, piping, foundations. FOB cost = $425 000 at the product of (height, m) (diameter, m)1.5 = 10 with n = 0.75 for the range 0.5–100. L+M* = 2.0. L/M = 0.48.

Mixer-settler, c/s with separate mixer and settler vessels including explosion-proof motor, drive for mixer excluding pipes, tankage, crud/rag removal system and pumps. Aqueous: oil ratio = 1:1. FOB cost for a single stage $30 000 for volumetric flow rate of aqueous phase to be treated = 10 L/s with n = 0.22 for the range 1–10 and n = 0.60 for the range 10–100. FOB cost $30 000 at total mixersettler volume = 20 m3 with n = 0.27 for the range 1–20 and n = 0.61 for the range 20–300. L+M* = 1.52. L/M = 0.25. Factors: c/s, q 1.00; PVC, q 1.75; rubber lined, q 2.1; PVC + fiber-glass reinforced polyester lined, q 2.0; 304 s/s, q 3.00; opanol lined, q 2.4. Factors, excluding, interstage piping and pumps and tankage and crud removal, q 1.00; including interstage piping and pumps excluding tankage and crud removal, q 1.54–1.75; including tankage and crud removal, q 2.00. Mixer-settler, c/s with separate mixer and settler vessels including explosion-proof motor, drive for mixer excluding pipes, tankage, crud/rag removal system and pumps. Aqueous:oil ratio = 1:1. Including piping, concrete, steel, instruments, electrical, insulation, painting and necessary labor to install the module. L+M cost for a single stage $29 000 for volumetric flow rate of aqueous phase to be treated = 1.5 L/s with n = 0 for the range 0.1–1.5 L/s with n = 0.40 for the range 1.5– 10. L+M cost for a single stage $63 000 for volumetric flow rate of aqueous phase to be treated = 10 L/s with n = 0.70 for the range 10–1000. Factors: c/s, q 1.00; concrete, q 0.70; rubber-lined, q 1.4; 316 s/s, q 2.00.

RDC: c/s vertical pressure vessel including internals, rotor, drive and explosiveproof motor, FOB cost $110 000 at the product of (height, m) (diameter, m)1.5 = 10 with n = 0.61 for the range 0.5–75. L+M* = 3.0; L/M = 0.96.

Centrifuge, continuous extraction, 316 s/s including flexible connections, explo- sion-proof motor, variable speed drive, ammeter, tachometer, excluding pumps, starter, flowmeters and control valves. FOB cost $220,000 at aqueous feed rated capacity = 2.2 L/s with n = 0.25 for the range 0.03–2.2 and n = 0.38 for the range 2.2–36. L+M* = 1.70. L/M = 0.96.

Centrifuge, continuous extraction, Alloy 20 including flexible connections, explo- sion-proof motor, variable speed drive, ammeter, tachometer, excluding pumps, starter, flowmeters and control valves. FOB cost $355 000 at aqueous feed rated capacity = 2.2 L/s with n = 0.48 for the range 1.9–20. L+M* = 1.45.

D.4 Detailed Equipment Cost Data Based on Equipment Type 399

Section 4.11

Adsorption: Gas

Cost the column as a pressure vessel, Section 10.1 and include regeneration equipment as a heat exchanger, Section 3.3, or as a multiple hearth furnace, Section 6.21.

Fixed bed: activated carbon, c/s with instruments and controls. FOB cost = $235 000 for a mass of carbon = 2200 kg with n = 0.32 for the range 500–2200 and n = 0.51 for the range 2200–13000. FOB cost = $560 000 for a mass of carbon = 13 000 kg with n = 0.75 for the range 13000–45000. L+M = 1.3–2.74. L/M = 0.37.

Fixed bed including regeneration equipment: air or gas drying, heat regenerated, including regeneration equipment and filters. FOB c/s cost = $23 500 for a gas flow rate = 70 dm3/s with n = 0.32 for the range 7–70 and n = 0.67 for the range 70–700. L+M* = 1.3–2.74. L/M = 0.37.

Section 4.12

Adsorption: Liquid

Carbon adsorption for two downflow, fixed bed adsorbers operating at 0.95 MPa with two-stage operation with backwash, then carbon exchange, c/s excluding carbon, building, foundations, hookup, carbon storage, regeneration and spent carbon storage. FOB cost $500 000 at active column cross-sectional area = 12 m2 with n = 0.52 for the range 1.2–12 and n = 1.00 for the range 12–300. L+M* = 1.44–1.5. Factors, single stage q 1.00; two stage series, q 0.96; 3-stage series, q 1.05; 4-stage series, q 1.15. Backwash pressure 0.95 MPa, q 1.00; 0.6 MPa, q 0.90.

Carbon cost = 0.3 FOB cost of adsorber. Regeneration cost = 0.36–0.4 FOB cost of adsorber.

Carbon $6–8/kg.

Section 4.13

Ion Exchange

Ion exchange: single fixed bed, 1.3 MPa pressure units for sodium form resin with rubber-lined c/s exchange columns for continuous operation excluding resin. FOB cost $100 000 at resin volume = 30 m3 with n = 0.67 for the range 0.3–30 and n = 1.00 for the range 30–2000. Factors: rubber-lined c/s, q 1.00; 304 s/s, q 2–3.5; 316 s/s, q 2.3–4.2. Forms of resin: sodium form, q 1.00; hydrogen form, q 1.33. Pressure: 1.3 MPa, q 1.00; I 0.7 MPa g, q 0.8. L+M* = 1.6–1.7.

Ion exchange resin: strong acid cationic hydrogen form or MR/MP form. FOB cost $17.60 for resin volume = 1 m3 with n = 0.95 for the range 1–18 m3. Factors: hydrogen form, q 1.00; sodium form, q 1.05; gel form, q 0.7–0.8.

Ion exchange resin: weak acid cationic hydrogen form or MR/MP form. FOB cost $32.50 for resin volume = 1 m3 with n = 0.95 for the range 1–18 m3. Factors: hydrogen form, q 1.00; sodium form, q 0.75; gel form, q 1.05.

400 Appendix D: Capital Cost Guidelines

Ion exchange resin: strong and weak base anionic hydrogen or sodium form. FOB cost $35.30 for resin volume = 1 m3 with n = 0.95 for the range 1–18 m3. Factors: gel form, SBA, q 0.4–0.85; gel form, WBA, q 0.75–1.0.

Section 4.14

Foam Fractionation

Cost as a vessel, Section 10.1 and add blowers, Section 2.1 and other auxiliaries.

Installed unit for waste water treatment: Installed cost $450 000 at waste water capacity = 44 L/s with n = 0.8.

Section 4.15

Membranes and Membrane Configurations

Costs not included in this section.

Section 4.16

Membranes: Gas

For VOC removal from air: Full process cost $250 000 for a gas flow rate = 18 dm3/s with n = 0.46 for 4.5–18 and n = 0.72 for 18–40.

For separation of permanent gases: Full process cost $2 000 000 for a gas flow rate = 1 m3/s with n = 0.93. Sensitive to concentration of target gas and compression. Flat and hollow fiber membrane only cost $150/m2.

Permeation: FOB membrane flat, or hollow fiber excluding auxiliary equipment. FOB cost = $130 000 at membrane area = 560 m2 with n = 0.42 for the range 100–560 and n = 1.00 for the range 560–10 000.

Section 4.17

Membranes: Dialysis

Dialysis: Hollow fiber throwaway units for medical application. FOB cost = $100 for a surface area = 1 m2.

Section 4.18

Membranes: Electrodialysis

Electrodialysis, reverse polarity for 4000 mg/L TDS alkalinity to 500 mg/L with minimum pretreatment including brine recirculation pumps, ED stack, electrical equipment, brine discharge facilities, product water treatment and storage, building, intake pipes and transfer pumps. TM cost = $25 000 000 at feed rate = 100 L/s with n = 0.82 for the range 40–1500 L/s. Feed factors: 4000 ppm, q 1.00; 2000 ppm, q 0.7; 850 ppm, q 0.1.