Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика _ I курс, I семестр, модуль №2.doc
Скачиваний:
49
Добавлен:
21.03.2015
Размер:
507.9 Кб
Скачать

14. Внутренняя энергия. Молекулярно кинетический смысл температуры. Средняя кинетическая энергия частиц.

Вну́тренняя эне́ргия тела — полная энергия этого тела за вычетом кинетической энергии тела как целого и потенциальной энергии тела во внешнем поле сил. Следовательно, внутренняя энергия складывается из кинетической энергии хаотического движения молекул, потенциальной энергии взаимодействия между ними и внутримолекулярной энергии.

Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.

Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии:

Температура с молекулярно-кинетической точки зрения — физическая величина, характеризующая интенсивность хаотического, теплового движения всей совокупности частиц системы и пропорциональная средней кинетической энергии поступательного движения одной частицы.

Связь между кинетической энергией, массой и скоростью выражается следующей формулой: . Таким образом, частицы одинаковой массы и значения скорости имеют одну и ту же температуру. Средняя кинетическая энергия частицы связана с термодинамической температурой постоянной Больцмана: , где:i — число степеней свободы; kB = 1.380 6505(24) × 10−23 Дж/K — постоянная Больцмана; T — температура;

15. Распределение Максвелла. Скорость теплового движения частиц.

Максвелла распределение, распределение по скоростям (или импульсам) молекул системы, находящейся в состоянии термодинамического равновесия. Впервые установлено Дж. К. Максвеллом в 1859. Согласно М. р., вероятность Dw (vx, vy, vz) того, что проекции скорости молекулы лежат в малых интервалах от vx до vx + Dvx, от vy до vy + Dvy и от vz до vz + Dvz определяется формулой:(1). Здесь m — масса молекулы, Т — абсолютная температура системы, k — постоянная Больцмана.

Вероятность того, что абсолютное значение скорости лежит в интервале от v до v + Dv, вытекает из (1) и имеет вид: (2). Эта вероятность достигает максимума при Скорость v0 называется наиболее вероятной. Чем ниже температура системы, тем большее число молекул имеют скорости, близкие к наиболее вероятной (см. рисунок).

Среднее число частиц в 1 см3 газа со скоростями в интервале от v до v + Dv равно Dn(v) = n0 Dw(v), где n0 — полное число частиц в 1 см3.

С помощью М. р. можно вычислять средние значения скоростей молекул и любых функций этих скоростей. В частности, средняя квадратичная скоростьлишь немного (враз) превышает наиболее вероятную скорость. Например, для азота при Т » 300 Км/сек, a v0 » 360 м/сек.

Скорость теплового движения молекул

МКТ газов основана на том, что газы состоят из беспорядочно движущихся молекул. Понятие температуры связано со скоростью хаотического движения молекул формулой где - среднее значение квадрата скорости. Следовательно Так как NА.k=const=R, то При t0=0°С средние скорости для азота – 500 м/с, для водорода – 1800 м/с.