Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика _ I курс, I семестр, модуль №2.doc
Скачиваний:
49
Добавлен:
21.03.2015
Размер:
507.9 Кб
Скачать

17. Обратимый и необратимый процесс. Термодинамические потенциалы.

Обратимый процесс (то есть равновесный) — термодинамический процесс, который может проходить как в прямом, так и в обратном направлении, проходя через одинаковые промежуточные состояния, причем система возвращается в исходное состояние без затрат энергии, и в окружающей среде не остается макроскопических изменений.

Обратимый процесс можно в любой момент заставить протекать в обратном направлении, изменив какую-либо независимую переменную на бесконечно малую величину.

Обратимые процессы дают наибольшую работу. Большую работу от системы вообще получить невозможно. Это придает обратимым процессам теоретическую важность. На практике обратимый процесс реализовать невозможно. Он протекает бесконечно медленно, и можно только приблизиться к нему.

Понятия равновесного состояния и обратимого процесса играют большую роль в термодинамике. Все количественные выводы термодинамики применимы только к равновесным состояниям и обратимым процессам.

Необратимым называется процесс, который нельзя провести в противоположном направлении через все те же самые промежуточные состояния. Все реальные процессы необратимы. Примеры необратимых процессов: диффузия, термодиффузия, теплопроводность, вязкое течение и др.

Термодинами́ческие потенциа́лы (термодинамические функции) — характеристическая функция в термодинамике, убыль которых в равновесных процессах, протекающих при постоянстве значений соответствующих независимых параметров, равна полезной внешней работе.

1. внутренняя энергия

2. энтальпия

3. свободная энергия Гельмгольца

4. потенциал Гиббса

5. большой термодинамический потенциал

1. Внутренняя энергия

Определяется в соответствии с первым началом термодинамики как разность между количеством теплоты, сообщенным системе, и работой, совершенной системой над внешними телами: U=Q-W

2. Энтальпи́я, также тепловая функция и теплосодержание — термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц.

Определяется следующим образом: H=U+PV, где Р – давление, а V – объём. Поскольку в изобарном процессе работа равна PΔV , приращение энтальпии в квазистатическом изобарном процессе равно количеству теплоты, полученному системой.

3. Свобо́дная эне́ргия Гельмго́льца (или просто свобо́дная эне́ргия) — термодинамический потенциал, убыль которого в квазистатическом изотермическом процессе равна работе, совершённой системой над внешними телами.

Также часто называемый просто свободной энергией. Определяется следующим образом: F=U-TS ,где Т – температура, а S – энтропия. Поскольку в изотермическом процессе количество теплоты, полученное системой, равно TΔS о убыль свободной энергии в квазистатическом изотермическом процессе равна работе, совершённой системой над внешними телами.

4. Потенциал Гиббса

Также называемый энергией Гиббса, термодинамическим потенциалом, свободной энергией Гиббса и даже просто свободной энергией (что может привести к смешиванию потенциала Гиббса со свободной энергией Гельмгольца): G=H-TS=F+PV=U+PV-TS

5. Большой термодинамический потенциал — термодинамический потенциал, используемый для описания систем с переменным числом частиц (большого канонического ансамбля).

18. Первое начало термодинамики. Работа.

Первое начало термодинамики — один из двух основных законов термодинамики, представляет собой закон сохранения энергии для термодинамических систем.

Согласно первому началу термодинамики, термодинамическая система может совершать работу только за счёт своей внутренней энергии или каких-либо внешних источников энергии. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника.

Существует несколько эквивалентных формулировок первого начала термодинамики

Количество теплоты, полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних сил

Изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе и не зависит от способа, которым осуществляется этот переход

Для элементарного количества теплоты δQ, элементарной работы δA и малого приращения dU внутренней энергии первый закон термодинамики имеет вид:

dU = δQ − δA + μdN + δA'.

Разделение работы на две части, одна из которых описывает работу, совершённую над системой, а вторая — работу, совершённую самой системой, подчёркивает, что эти работы могут быть совершены силами разной природы вследствие разных источников сил.

Важно заметить, что dU и dN являются полными дифференциалами, а δA и δQ — нет. Приращение теплоты для квазистатического процеса выражается через температуру и приращение энтропии: δQ=TdS.

(Квазистатический процесс в термодинамике — идеализированный процесс, состоящий из непрерывно следующих друг за другом состояний равновесия.)

Рассмотрим несколько частных случаев:

Если δQ > 0, то это означает, что тепло к системе подводится.

Если δQ < 0, аналогично — тепло отводится.

Если δQ = 0, то система не обменивается теплом с окружающей средой и называется адиабатически изолированной.

Обобщая: в конечном процессе элементарные количества теплоты могут быть любого знака. Общее количество теплоты, которое мы назвали просто Q — это алгебраическая сумма количеств теплоты, сообщаемых на всех участках этого процесса. В ходе процесса теплота может поступать в систему или уходить из неё разными способами.

При отсутствии работы над системой и потоков энергии-вещества, когда δA' = 0, δQ = 0, dN = 0, выполнение системой работы δA приводит к тому, что ΔU < 0, и энергия системы U убывает. Поскольку запас внутренней энергии U ограничен, то процесс, в котором система бесконечно долгое время выполняет работу без подвода энергии извне, невозможен, что запрещает существование вечных двигателей первого рода.

Первое начало термодинамики:

при изобарном процессе: Q=ΔU+A= ΔU+p ΔV

при изохорном процессе (A = 0): Q=ΔU=(m/M)*Cv*ΔT

при изотермическом процессе (ΔU = 0): Q=A=(m/M)RTLn(V1/V2)

Здесь m-масса газа, M-молярная масса газа, Cv-молярная теплоёмкость при постоянном объёме, p,V,T -давление, объём и температура газа соответственно, причём последнее равенство верно только для идеального газа.