Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizika_Otvety.docx
Скачиваний:
226
Добавлен:
24.03.2015
Размер:
1.74 Mб
Скачать

27) Ферромагнетики и антиферромагнетики :

ФЕРРОМАГНЕТИКИ-материалы, обладающие большой магнитной проницаемостью. К ним относятся: сталь, железо, никель, кобальт, их сплавы и др. Магнитные свойства веществ зависят от магнитных свойств элементарных носителей магнетизма -движущихся внутри атомов электронов, а также от совместного действия их групп. Ферромагнетики являются сильномагнитными веществами. Их намагниченность в огромное число раз превосходит намагниченность диа- и парамагнетиков, принадлежащих к категории слабомагнитных веществ. Кроме орбитальных моментов, электроны, вращаясь вокруг своих осей, создают еще спиновые моменты, которые играют важнейшую роль в намагничивании ферромагнетиков. В ферромагнетиках образуются отдельные самопроизвольные намагниченные области (от 10-2 до 10-6 см3, спиновые моменты которых ориентируются параллельно. Если ферромагнетик не находится во внешнем поле, то магнитные моменты отдельных областей разнонаправлены и суммарный магнитный момент тела равен нулю - ферромагнетик не намагничен. Внесение ферромагнетика во внешнее магнитное поле вызывает поворот магнитных моментов части областей в направлении внешнего поля и рост размеров тех областей, направления магнитных моментов которых близки к направлению внешнего поля. В результате ферромагнетик намагничивается. Магнитная проницаемость ферромагнетика m = В/Н непостоянна и зависит от напряженности магнитного поля. При работе в цепях переменного магнитного поля происходит периодическое перемагничивание ферромагнетика.

Ферромагнетики подразделяют на магнитомягкие и магнитотвердые. Первые обладают малой коэрцитивной силой (напряженность поля, необходимая для изменения намагниченности тела до нуля) и остаточной намагниченностью (намагниченность в нулевом поле). Для вторых характерны большие значения коэрцитивной силы и остаточной намагниченности.

Магнитотвердые ферромагнетики служат в основном для изготовления постоянных магнитов. Магнитомягкие ферромагнетики используют в электротехнике (трансформаторы, электромоторы, генераторы и др.), в устройствах преобразования электромагнитной энергии в механическую и наоборот.

В некоторых случаях обменные силы приводят к возникновению так называемых антиферромагнетиков. В антиферромагнетиках спиновые моменты электронов самопроизвольно ориентированы антипараллельно друг другу. Такая ориентация охватывает попарно соседние атомы. В результате антиферромагнетик обладает очень малой магнитной восприимчивостью и ведут себя как слабые парамагнетик. Для антиферромагнетиков также существует температура, при которой антипараллельная ориентация спинов исчезает. Эта температура называет антиферромагнитной точкой Кюри или точкой Нееля. У некоторых антиферромагнетиков таких температур две (верхняя и нижняя точка), причём антиферромагнитные свойства наблюдаются только при промежуточных температурах. Выше верхней точки вещество ведет себя как парамагнетика при температурах, меньших нижней точки Нееля, становится ферромагнетиком.

28)Энергия магнитного поля :

Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы. Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Проводник, c протекающим по нему электрическим ток, всегда окружен магнитным полем, причем магнитное поле исчезает и появляется вместе с исчезновением и появлением тока. Магнитное поле, подобно электрическому, является носителем энергии. Логично предположить, что энергия магнитного поля совпадает с работой, затрачиваемой током на создание этого поля. Рассмотрим контур индуктивностью L, по которому протекает ток I. С этим контуром сцеплен магнитный поток Ф=LI, поскольку индуктивность контура неизменна, то при изменении тока на dI магнитный поток изменяется на dФ=LdI. Но для изменения магнитного потока на величину dФ следует совершить работу dА=IdФ=LIdI. Тогда работа по созданию магнитного потока Ф равна Значит,энергия магнитного поля, которое связано с контуром,(1)

Соседние файлы в предмете Физика