Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizika_Otvety.docx
Скачиваний:
226
Добавлен:
24.03.2015
Размер:
1.74 Mб
Скачать

35)Интерференция световых волн :

Интерференцией световых волн называется сложение двух когерентных волн, вследствие которого наблюдается усиление или ослабление результирующих световых колебаний в различных точках пространства.

Условия интерференции

Волны должны быть когерентны. Когерентность - согласованность. В простейшем случае когерентными являются волны одинаковой длины, между которыми существует постоянная разность фаз

Свойства когренетности :

  1. Одинаковая частота

  2. Одинаковая разность фаз во всех точках световых волн

  3. Вектора напряженности электрического поля в идущих волнах двигаются параллельно друг другу.

Условие максимума.

Пусть разность хода между двумя точками ,

тогда условие максимума:

т. е. на разности хода волн укладывается четное число полуволн (k= 1, 2, 3, ...).

Условие минимума

Пусть разность хода между двумя точками ,

тогда условие минимума: ,

т. е. на разности хода волн укладывается нечетное число полуволн (k= 1, 2, 3, ...).

Расстояние между двумя соседними максимумами интенсивности или между двумя соседними минимумами называют шириной интерференционной полосы

Одной из важных характеристик наблюдаемой интерференционной картины является видность V, которая характеризует контраст интерференционных полос.

По определению

(1.3)

где и– соответственно максимальное и минимальное значения интенсивности в интерференционной картине и равны :

,; где –a1 иa2 – амплитуды колебаний световых волн.

При интерференции монохроматических волн видность V зависит только от соотношения интенсивностей интерферирующих пучков света и выражается формулой:

36)Опыт Юнга. Зеркала Френеля.

Первым интерференционным опытом, получившим объяснение на основе волновой теории света, явился опыт Юнга(1802 г.). В опыте Юнга свет от источника, в качестве которого служила узкая щель S, падал на экран с двумя близко расположенными щелями S1и S2(рис. 3.7.3). Проходя через каждую из щелей, световой пучок уширялся вследствие дифракции, поэтому на белом экране Э световые пучки, прошедшие через щели S1и S2, перекрывались. В области перекрытия световых пучков наблюдалась интерференционная картина в виде чередующихся светлых и темных полос.

Юнг был первым, кто понял, что нельзя наблюдать интерференцию при сложении волн от двух независимых источников. Поэтому в его опыте щели S1и S2, которые в соответствии с принципом Гюйгенса можно рассматривать как источники вторичных волн, освещались светом одного источника S. При симметричном расположении щелей вторичные волны, испускаемые источниками S1и S2, находятся в фазе, но эти волны проходят до точки наблюдения P разные расстояния r1и r2. Следовательно, фазы колебаний, создаваемых волнами от источников S1и S2в точке P, вообще говоря, различны. Таким образом, задача об интерференции волн сводится к задаче о сложении колебаний одной и той же частоты, но с разными фазами. Утверждение о том, что волны от источников S1и S2распространяются независимо друг от друга, а в точке наблюдения они просто складываются, является опытным фактом и носит название принципа суперпозиции.

Зеркала Френеля.

 Другой интерференционный опыт, аналогичный опыту Юнга, но в меньшей степени осложненный явлениями дифракции и более светосильный, был осуществлен О. Френелем в 1816 г. Две когерентные световые волны получаются в результате отражения от двух зеркал М и N, плоскости которых наклонены под небольшим углом φ друг к другу (рис. 8.4).

Источником служит узкая ярко освещенная щель S, параллельная ребру между зеркалами. Отраженные от зеркал пучки падают на экран, и в той области, где они перекрываются ,возникает интерференционная картина. От прямого попадания лучей от источника S экран защищен ширмой . Для расчета освещенности J экрана можно считать, что интерферирующие волны испускаются вторичными источниками S1 и S2 , представляющими собой мнимые изображения щели S в зеркалах. Поэтому J будет определяться формулой двулучевой интерференции, в которой расстояние l от источников до экрана следует заменить на , где- расстояние отS до ребра зеркал, b - расстояние от ребра до экрана Расстояние d между вторичными источниками равно: . Поэтому ширина интерференционной полосы на экране равна:

.

Соседние файлы в предмете Физика