Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ekzamen2_-_kopia.docx
Скачиваний:
35
Добавлен:
29.03.2015
Размер:
737.53 Кб
Скачать

19. Динамика вращательного движения. Момент силы и момент инерции. Основной закон механики вращательного движения абсолютно твердого тела.

Рассмотрим движение твердого тела, имеющею ось вращения под действием произвольно направленной силы , приложенной к телу в некоторой точке А , которую можно разложить на две составляющие: вертикальную и горизонтальную (рис.5.1). Вертикальная составляющая может вызывать перемещение тела в направлении оси вращения поэтому при рассмотрении вращательного движения ее можно исключить.Горизонтальная составляющая , если она не пересекается с осью вызывает вращение тела. Действие этой силы зависит от ее числового значения и расстояния линии действия от оси вращения.

Пусть на тело, в плоскости перпендикулярной оси вращения действует сила(рис.5.2). Разложим эту силу на две составляющие:и

Сила пересекает ось вращения и, следовательно, не влияет на вращение тела. Под действием составляющейтело будет совершать вращательное движение вокруг оси. Расстояниеот оси вращения до линии вдоль которой действует силаназывается плечом силы. Моментом силы относительно точки О называется произведение модуля силына плечо

С учетом, что 

момент силы

.

С точки зрения векторной алгебры это выражение представляет векторное произведение радиуса-вектора , проведенного в точку приложения силына эту силу. Таким образом, момент силы относительно точки О является векторной величиной и равен

(5.1)

Вектор момента силы направлен перпендикулярно к плоскости, проведенной через векторы и, и образует с ними правую тройку векторов (при наблюдении из вершины вектора М видно, что вращение по кратчайшему расстоянию откпроисходит против часовой стрелки).

Согласно второму закону Ньютона, для тангенциальной составляющейсилы , действующей на материальную точку массой m, и ускорения

можем записать

С учетом, что

 и 

имеем

Домножимлевую и правую части на и получим

(5.2)

Или Произведение массы материальной точки  тела на квадрат ее расстояния  до оси вращения называется моментом инерции материальной точки относительно оси вращения:

20. Вычисление момента инерции. Примеры. Теорема Штейнера.

Момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела Jc относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями (теорема Гюйгенса-Штейнера)

Найдем зависимость между моментами инерции тела относительно параллельных осей z и z', одна из которых проходит через центр масс С тела. Проведем остальные оси так, как это показано на рис. 3.6

 

По определению осевых моментов инерции имеем

,

 .

Тогда

 

Так как и согласно (3.8)получаем

 

21. Момент импульса и его сохранение. Гироскопические явления.

Моментом импульса (моментом количества движения) материальной точки относительно неподвижной точки О называется вектор L, равный векторному произведению радиус-вектора r, проведенного из точки О в место нахождения материальной точки, на вектор p ее импульса

L=r*P, где r - радиус-вектор частицы относительно выбранного начала отсчета, p – импульс частицы

Момент импульса системы относительно неподвижной точки:

Если тело вращается вокруг одной из главных осей инерции, то направление вектора момента импульса тела совпадает с направлением вектора его угловой скорости, а значение момента импульса может быть выражено через момент инерции

Закон сохранения момента импульса (закон сохранения углового момента) — векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной в случае равновесия системы. В соответствии с этим, момент импульса замкнутой системы относительно любой неподвижной точки не изменяется со временем.

Закон сохранения момента импульса есть проявление изотропности пространства.

гироскопы — массивные однородные тела, вращающиеся с большой угловой скоростью около своей оси сим метрии, являющейся свободной осью.

Если момент внешних сил, приложенных к вращающемуся гироскопу относительно его центра масс, отличен от нуля, то наблюдается явление, получившее название гироскопического эффекта. Оно состоит в том, что под действием пары сил F, приложенной к оси вращающегося гироскопа, ось гироскопа поворачивается вокруг прямой О3О3, а не вокруг прямой О2О2, как это казалось бы естественным на первый взгляд (O1O1 и О2О2 лежат в плоскости чертежа, а О3О3 и силы F перпендикулярны ей).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]