Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Релейная защита. УМК.doc
Скачиваний:
367
Добавлен:
02.04.2015
Размер:
12.69 Mб
Скачать

6.1.6. Механические устройства апв

Для выключателей малой и средней мощности напряжением до 35 кВ используют грузовые и пружинные приводы. Рабочее усилие пружины не остается постоянным. К концу хода включения усилие уменьшается. Для улучшения тяговой характеристики пружинный привод дополняют маховиком. Вначале процесса включения избыточная энергия пружины идет на разгон маховика. К концу хода включения энергия, накопленная в маховике, передается механизму включения. Получается своего рода пружинно-грузовой привод.

Время отключения выключателя с пружинным приводом составляет 0,10,15 с, время включения 0,20,4 с.

Грузовой привод имеет встроенное механическое устройство АПВ, которое осуществляет однократное повторное включение выключателя без каких-либо дополнительных электрических элементов. Встроенное АПВ работает следующим образом. При КЗ на линии действует релейная защита и подает сигнал в отключающую катушку выключателя. Происходит расцепление защелки, удерживающей выключатель во включенном положении, и выключатель отключается. С некоторой задержкой сердечник отключающей катушки воздействует и на другую защелку, удерживающую груз в верхнем положении. Освобожденный груз производит включение выключателя. Время автоматического повторного включения с механическим пуском составляет 0,30,6 с.

В случае устойчивого КЗ релейная защита повторно отключает линию. Однако теперь включение выключателя не произойдет, поскольку груз находится в своем нижнем положении. Для его подъема требуется время около 10 с, к тому же в результате действия встроенного АПВ шкив привода дополнительно запирается.

Возможно дистанционное управление грузовым приводом. Для этого имеется катушка включения и дистанционная отключающая катушка. При подаче питания в дистанционную отключающую катушку выключатель отключается, однако повторное включение не происходит.

Пружинный привод может изготавливаться как со встроенным механическим АПВ, так и без него. В последнем случае АПВ может быть осуществлено с помощью электрической схемы.

6.1.7. Апв трансформаторов

На однотрансформаторной подстанции АПВ трансформатора является обязательным. Осуществление АПВ трансформаторов на двухтрансформаторной подстанции рекомендуется, если при отключении одного трансформатора оставшийся в работе трансформатор не может обеспечить питание нагрузки без отключения части, потребителей. Запрет АПВ при повреждении внутри бака трансформатора осуществляется с помощью сигнального контакта газового реле.

Для осуществления АПВ трансформатора используются те же устройства, что и для АПВ линии. При этом АПВ должно действовать с выдержкой времени для исключения его срабатывания при внутренних КЗ, сопровождающихся бурным газообразованием, когда отключающий контакт газового реле замыкается раньше, чем сигнальный.

6.2. Автоматическое включение резерва (авр)

6.2.1. Назначение и область применения авр

Одним из основных требований потребителей электрической энергии является требование надежности. Подключение потребителей к одному источнику питания через одиночную линию не обеспечивает высокой надежности электроснабжения. В случае выхода из строя источника или линии электроснабжение прекращается.

Надежность питания может быть повышена как за счет повышения надежности самих элементов схемы – генераторов, линий электропередачи, выключателей и т. д., так и за счет резервирования, сущность которого заключается в том, что при выходе из строя какого-либо элемента схемы сети в работу вводится резервный элемент. Схемы резервирования показаны на рис. 6.3.

В схеме, представленной на рис. 6.3,а, питание потребителей в нормальном режиме осуществляется от генератора G1 через линию W1, которая является рабочей. Линия W2 является резервной – она находится под напряжением (выключатель QЗ включен), но ток по ней не проходит (выключатель Q4 отключен). При выходе из строя рабочей линии питание потребителей переводится на резервную. Для этого поврежденная линия отключается, а выключатель Q4 резервной линии включается. Перерыв в питании оказывается вполне допустимым практически для всех потребителей.

а) б) с)

Рис. 6.3. Схемы резервирования линий

В рассмотренной схеме резерв представлен в явном виде: в нормальном режиме резервная линия стоит под напряжением без нагрузки. На схеме рис. 6.3,б) резервирование выполнено в неявном виде. Здесь обе линии являются рабочими. В нормальном режиме выключатель Q5 отключен, и каждая линия обеспечивает питание потребителей, подключенных к соответствую­щей секции.

При КЗ на одной из линий, например на W1, последняя отключается. После этого включается выключатель Q5, установленный на перемычке между секциями. В результате такого переключения потребители левой секции начнут получать питание по линии W2. Для того, чтобы оставшаяся в работе линия W2 могла дополнительно обеспечивать питание потребителей и левой секции, она должна быть рассчитана на суммарную нагрузку потребителей обеих секций. В нормальном режиме линия W2 оказывается недогруженой, т. е. содержит в себе скрытый (неявный) резерв, который может быть использован в аварийном режиме.

В обеих схемах потребители, питающиеся в нормальном режиме от одного источника питания, в аварийном режиме подключаются к другому источнику, который должен быть рассчитан на дополнительную нагрузку. Так как в нормальном режиме оба источника несут определенную нагрузку, то имеющийся у них резерв для покрытия дополнительной нагрузки является скрытым.

На схеме рис. 6.3,в показана кольцевая схема питания потребителей на подстанциях В, С, D и Е. В нормальном режиме питание осуществляется по разомкнутой схеме – выключатель Q5 отключен. Потребители подстанций В и С получают питание по линиям левой части кольца. Электроснабжение подстанций Е и D осуществляется по правой части кольца. Линия WЗ между подстанциями С и D находится под напряжением, но без нагрузки. В данном случае имеется явный резерв.

При КЗ в точке К1 на линии W1 релейная защита отключит поврежденную линию выключателями Q1 и Q2. Сборные шины подстанций В и С останутся без напряжения. Для восстановления их питания необходимо включить выключатель Q5 линии WЗ. Такое переключение возможно, если линии WЗ, W4, W5 имеют достаточную пропускную способность для питания этих потребителей, т. е. имеют неявный резерв.

При явном резерве возникает вопрос: почему он не используется в нормальном режиме? Ведь сооружение резервной линии или любого другого резервного элемента требует определенных затрат и, если затраты сделаны, то желательно такой элемент эксплуатировать и в нормальном режиме. Параллельное подключение резервного элемента, например, линии, в нормальном режиме уменьшает потери энергии и падение напряжения в линиях, а при выходе из строя рабочей линии резервная воспринимает на себя всю нагрузку без перерыва. Эти преимущества вполне очевидны и их следует иметь в виду при выборе схемы питания потребителей. Однако параллельная работа приводит и к иным условиям: увеличиваются токи короткого замыкания, и, следовательно, утяжеляется аппаратура, усложняется релейная защита.

Как следствие указанных условий, сооружение питающих линий и распределительных подстанций становится дороже. Расчеты показывают, что в распределительных сетях 6-10 кВ целесообразно применять разомкнутые схемы, а надежность электроснабжения повышать за счет введения имеющегося резерва. Замкнутые схемы рекомендуется применять только в случаях питания особо ответственных потребителей большой мощности.

Эффективность введения резерва тем выше, чем меньше перерыв в питании с момента отключения рабочего элемента до включения резервного. Быстрое же включение резервного элемента возможно только с помощью средств автоматического включения резерва (АВР).

Согласно требованиям ПУЭ устройства АВР обязательно должны применяться для потребителей первой категории. Для потребителей второй категории в большинстве случаев целесообразно также применять АВР.