Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы кодирование.docx
Скачиваний:
462
Добавлен:
11.04.2015
Размер:
1.7 Mб
Скачать

24. Последовательные каскадные коды

Важным этапом в развитии теории кодирования является появление каскадных кодов [24], в основе построения которых лежит идея совместного использования нескольких составляющих кодов. Данный подход позволил существенно повысить эффективность применения кодирования по сравнению с базовыми некаскадными методами.

Пример использования каскадного кода, состоящего из двух составляющих кодов, показан на рис. 4.1. Здесь данные источника сначала кодируются внешним (n1, k1) кодом. В качестве внешнего кода часто используются недвоичные коды, например, коды Рида-Соломона. Затем закодированные символы внешнего кода кодируются кодером внутреннего (n2, k2) кода. Общая длина кодового слова каскадного кода оказывается равной N=n1n2 двоичных символов, причем K=k1k2 из них являются информационными. Следовательно, кодовая скорость полученного каскадного кода оказывается равной

 

             где r1, r2 кодовые скорости составляющих кодеров.

Также отметим, что минимальное расстояние сформированного каскадного кода будет равно D=d1d2, где d1 и d2 — минимальные расстояния составляющих кодов.

 

            Декодирование каскадного кода осуществляется в обратном порядке, т.е. принятая из

канала последовательность сначала декодируется декодером внутреннего кода, а затем полученная последовательность декодируется декодером внешнего кода. Подчеркнем, что хотя общая длина кода равна N, структура каскадного кода позволяет применять для декодирования два декодера кодов с длинами всего лишь n1 и n2 соответственно. Данное свойство позволяет существенно снизить сложность декодирования по сравнению с сопоставимыми по эффективности декодерами некаскадных блоковых или сверточных кодов.

25. Параллельные каскадные коды

Ту́рбо-код — параллельный каскадный блоковый систематический код, способный исправлять ошибки, возникающие при передаче цифровой информации по каналу связи с шумами. Синонимом турбо-кода является известный в теории кодирования термин — каскадный код.

Турбо-код состоит из каскада параллельно соединённых систематических кодов. Эти составляющие называются компонентными кодами. В качестве компонентных кодов могут использоваться свёрточные коды, коды Хемминга, Рида — Соломона, Боуза — Чоудхури — Хоквингема и другие. В зависимости от выбора компонентного кода турбо-коды делятся на свёрточные турбо-коды и блоковые коды-произведения.

Турбо-коды были разработаны в 1993 году и являются классом высокоэффективных помехоустойчивых кодов с коррекцией ошибок, используются в электротехнике и цифровой связи, а также нашли своё применение в спутниковой связи и в других областях, в которых необходимо достижение максимальной скорости передачи данных по каналу связи с шумами в ограниченной полосе частот.

Преимущества. Среди всех практически используемых современных методов коррекции ошибок турбо-коды и коды с низкой плотностью проверок на чётность наиболее близко подходят к границе Шеннона, теоретическому пределу максимальной пропускной способности зашумленного канала. Турбо-коды позволяют увеличить скорость передачи информации, не требуя увеличения мощности передатчика, или они могут быть использованы для уменьшения требуемой мощности при передаче с заданной скоростью. Важным преимуществом турбо-кодов является независимость сложности декодирования от длины информационного блока, что позволяет снизить вероятность ошибки декодирования путём увеличения его длины.[9]

Недостатки. Основной недостаток турбо-кодов — это относительно высокая сложность декодирования и большая задержка, которые делают их неудобными для некоторых применений. Но, например, для использования в спутниковых каналах этот недостаток не является определяющим, так как длина канала связи сама по себе вносит задержку, вызванную конечностью скорости света.

Ещё один важный недостаток турбо-кодов — сравнительно небольшое кодовое расстояние (то есть минимальное расстояние между двумя кодовыми словами в смысле выбранной метрики). Это приводит к тому, что, хотя при большой входной вероятности ошибки (то есть в плохом канале) эффективность турбо-кода высока, при малой входной вероятности ошибки эффективность турбо-кода крайне ограничена.[10] Поэтому в хороших каналах для дальнейшего уменьшения вероятности ошибки применяют не турбо-коды, а LDPC-коды.

Хотя сложность используемых алгоритмов турбо-кодирования и недостаток открытого программного обеспечения препятствуют внедрению турбо-кодов, в настоящее время многие современные системы используют турбо-коды.

Применение турбо-кодов. Компании France Telecom и Telediffusion de France запатентовали широкий класс турбо-кодов, что ограничивает возможность их свободного применения и, в то же время, стимулирует развитие новых методов кодирования таких, как, например, LDPC.

Турбо-коды активно применяются в системах спутниковой и мобильной связи, беспроводного широкополосного доступа и цифрового телевидения.[8] Турбо-коды утверждены в стандарте спутниковой связи DVB-RCS. Турбо-коды также нашли широкое применение в мобильных системах связи третьего поколения (стандарты CDMA2000 и UMTS).[9]