Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конц.свр.естеств.УЧЕБ.ПОС.doc
Скачиваний:
80
Добавлен:
11.04.2015
Размер:
2.74 Mб
Скачать

12. Принцип инвариантности

Инвариантность – неизменность какой-либо величины при изменении физических условий (процессов) или по отношению к некоторым внешним преобразованиям в зависимости от смещения объекта во времени и пространстве.

Принцип инвариантности относительно сдвигов объекта в пространстве и времени является важным в понимании законов природы. Принцип инвариантности – смещение во времени и пространстве не влияет на протекание физических процессов. Инвариантность непосредственно связана с симметрией, представляющей собой сравнительное постоянство структурности материального объекта относительно его преобразований.

13. Принципы симметрии

Принцип симметрии – категория диалектики, которая определяет степень устойчивости систем во времени и пространстве. Принцип симметрии в настоящее время рассматривается на основе использования теоремы Нетер, которая в 1918 году доказала фундаментальную теорему, носящую теперь ее имя. Эта теорема утверждает, что существование любой конкретной симметрии – в пространстве – времени, степенях свободы элементарных частиц и физических полей – приводит к соответствующему закону сохранения, причем из этой же теоремы следует и конкретная структура сохраняющейся величины.

Согласно этой теоремы, из инвариантности относительно сдвига во времени – сдвиговая симметрия – (что выражает физическое свойство равноправия всех моментов времени – однородность времени) следует закон сохранения энергии; относительно пространственных сдвигов (свойство равноправия всех точек пространства – однородность пространства) – закон сохранения импульса или количества движения; относительно пространственного вращения – осевая симметрия (свойство равноправия всех направлений в пространстве – изотропность пространства) – закон сохранения момента количества движения и другие (электрический заряд, обобщенный закон движения центра масс релятивистской системы), подчиняющиеся законам сохранения.

Теорема дает наиболее простой и универсальный метод получения законов сохранения в классической и квантовой механике, теории поля и т.д. Особенно важное значение имеет теорема Нетер в квантовой теории поля, где законы сохранения, вытекающие из существования определенной группы симметрии, являются часто основным источником информации о свойствах изучаемых объектов.

Свойства симметрии относятся к числу самых основных, коренных свойств физических систем. Большая часть теории элементарных частиц построена на анализе именно этих свойств. Понятия частицы и античастицы, идеи, связанные с проблемами четности, обратимости времени, и многое другое – в основе всего этого лежат представления о симметрии, о математической формулировке конкретных симметрий. В этом смысле современная физика идет по пути, проложенному геометрией.

14. Принципы суперпозиции, неопределенности, дополнительности

К категориям диалектики относятся принципы суперпозиции, неопределённости и дополнительности. Эти три принципа являются одними из основополагающих принципов теоретической физики.

Принцип суперпозиции в классической физике позволяет получать результирующий эффект от наложения (суперпозиции) нескольких независимых друг от друга воздействий как сумму эффектов, вызываемых каждым воздействием в отдельности. Он справедлив для систем или полей, описываемых линейными уравнениями; очень важен в механике, теории колебаний и волновой теории физических полей. В квантовой механике, гидродинамике принцип суперпозиции относится к волновым функциям: если физическая система может находиться в состояниях, описываемых двумя или тремя волновыми функциями, то она может также находиться в состоянии, описываемом любой линейной комбинацией этих функций.

Принцип неопределенности представляет собой фундаментальное положение квантовой теории, состоящее в том, что характеризующие физическую систему так называемые дополнительные физические величины (например, координата и импульс) не могут одновременно принимать точные значения. Он отражает двойственную корпускулярно-волновую природу элементарных частиц и теоретико-вероятностное, статистическое описание их взаимодействий. Погрешности, неточности, ошибки при одновременном определении в эксперименте дополнительных величин связаны соотношением неопределенностей, установленным в 1925 г. Вернером Гейзенбергом (1901 -1976).

Соотношение неопределенностей состоит в том, что произведение неточностей любых пар дополнительных величин (например, координаты и проекции импульса на нее, энергии и времени) определяется постоянной Планка - квантом действия, названной в честь Макса Карла Эрнста Людвига Планка (1858 -1947).

Согласно принципу дополнительности, сформулированному Нильсом Хенриком Давидом Бором (1885 - 1962), при экспериментальном исследовании микрообъекта могут быть получены точные данные либо о его энергиях и импульсах, либо о поведении в пространстве и времени. Энергетически-импульсная и пространственно-временная характеристики, получаемые при взаимодействии микрообъекта с соответствующими измерительными приборами, «дополняют» друг друга. Этот принцип 'стал краеугольным камнем квантовой механики.