Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Часть 2.doc
Скачиваний:
58
Добавлен:
13.04.2015
Размер:
2.49 Mб
Скачать

где ; .

2.6. Представление синусоидальных функций времени комплексными числами

Рис. 2.13. Вектор тока на комплексной плоскости

Пусть задано выражение синусо­идального тока i = Imsin(t+). Как мы видели раньше, этому выражению соответствует вектор, длина которого равна Im, а угол наклона к горизонтальной оси . Если этот вектор изобразить в комплексной плоскости (рис. 2.13), то его можно обозначить комплексным числом , которое называется комплексной амплитудой тока.

Комплексное действующее значение тока получается делением последнего выражения на :

.

Здесь и дальше буквами с точкой над ними () обозначаются комплексные числа, представляющие синусоидальные функции времени. Это ток, напряжение и ЭДС. Комплексные сопротивление и проводимость обозначаются прописными буквами Z и Y , а их модули строчными z и y. Комплексная мощность обозначается буквой S с волнистым значком (тильда) над ней: .

2.7. Способы задания синусоидального тока

Как следует из вышесказанного, синусоидальный ток можно задать четырьмя различными формами: уравнением i = Imsin(t + ), определяющим мгновенное значение тока (значение тока в любой момент времени), волновой диаграммой, вектором и комплексным числом. При этом мы легко можем перейти от одной формы задания к другой.

Например:

1) i = 20sin(t+110),

,

;

2) ,

,

i = 8,49sin(t-60);

3) ,

i = 5sin(t-143,1),

,

u = 100 sin (t + 60).

В качестве начальной фазы мы берем не 120, которые указаны на волновой диаграмме, а тот угол, на который сдвинуто начало синусоиды. Начальная фаза на волновой диаграмме определяется ближайшей к началу координат точкой перехода синусоиды через ноль от минуса к плюсу – это 60. Так как начало синусоиды смещено от точки 0 влево, то начальная фаза положительна.

2.8. Законы Кирхгофа в цепях синусоидального тока. Методы расчета цепей синусоидального тока

Для мгновенных значений ЭДС, токов и напряжений остаются справедливыми сформулированные ранее законы Кирхгофа.

П е р в ы й: в любой момент времени алгебраическая сумма токов в узле электрической цепи равна нулю:

, (2.8)

где n – число ветвей, сходящихся в узле.

В т о р о й: в любой момент времени в замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме напряжений на всех остальных элементах контура:

, (2.9)

где m – число ветвей, образующих контур.

Токи, напряжения и ЭДС, входящие в уравнения (2.8) и (2.9), есть синусоидальные функции времени, которые мы рассматриваем как проекции некоторых векторов на оси координат. Так как сложению проекций соответствует сложение векторов и соответствующих им комплексных чисел, то справедливыми будут следующие уравнения, которые можно записывать как для действующих, так и для амплитудных значений.

Законы Кирхгофа в векторной форме:

Законы Кирхгофа в символической форме:

(2.10)

(2.11)

Из сказанного вытекают три возможных подхода к расчету цепей синусоидального тока: выполнение операций непосредственно над синусоидальными функциями времени по уравнениям (2.8) и (2.9); применение метода векторных диаграмм, основанного на уравнениях (2.10), использование в расчетах комплексных чисел и уравнений (2.11), являющихся основой символического метода.

Пример 2.4. В узле электрической цепи сходятся три ветви (рис. 2.14).

Рис. 2.14. Узел электрической цепи

Токи первых двух ветвей известны:

i1 = 8sin(t+30) А,

i2 = 6sin(t+120) А.

Требуется записать выра­же­ние тока i3 и определить показания амперметров электро­­магнитной системы.

Р е ш е н и е. 1. Непосредственное сложение синусоид:

i3 = i1+i2 = 8sin(t+30)+6sin(t+120) = I3msin(t+3).

Сумма двух синусоид одинаковой частоты есть тоже синусоида той же частоты. Ее амплитуда и начальная фаза могут быть найдены по известным из математики формулам:

A,

,

откуда 3 = 66,87. Итак, i3 = 10sin (t+66,87).

2. Применение метода векторных диаграмм.

Рис. 2.15. Векторная диаграмма токов

В соответствии с первым законом Кирхгофа в векторной форме для цепи на рис. 2.14 имеем . В прямоугольной системе координат строим векторы и и находим вектор , равный их сумме (рис. 2.15).

Так как треугольник oab прямоугольный, а сторона ab равна длине вектора I2m, то = А.

Если треугольник получается не прямо­угольным, то применяется теорема косинусов.

Начальная фаза третьего тока равна углу наклона: вектора I3m к горизонтальной оси:

3. Решение символическим методом.

Записываем комплексные амплитуды первого и второго токов:

A,

A.

По первому закону Кирхгофа в символической форме

А.

Модуль последнего комплексного числа равен амплитуде третьего тока, а аргумент – начальной фазе.

Определяем показания амперметров. Приборы электромагнитной системы показывают действующие значения токов и напряжений, поэтому

A, A, A.

Обращаем внимание на то, что . Это не ошибка. В цепях синусоидального тока для показаний приборов законы Кирхгофа не справедливы. Можно складывать мгновенные значения токов (синусоидальные функции времени), векторы и комплексные числа, но не численные значения токов и напряжений, не показания приборов.

Следует заметить, что первый из рассмотренных в примере методов из-за громоздкости вычислительных операций с синусоидами практически не применяется.

Метод векторных диаграмм удобен при решении относительно несложных задач.

В символической форме, как будет показано ниже, можно рассчитать сколь угодно сложную линейную цепь.