Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Часть 2.doc
Скачиваний:
58
Добавлен:
13.04.2015
Размер:
2.49 Mб
Скачать

2.13. Параллельное соединение активного сопротивления, индуктивности и емкости

Рассмотрим схему, состоящую из параллельно соединенных активного и реактивных элементов (рис. 2.31, а).

Требуется по известным G, ВL, ВC, U рассчитать токи. Как и прежде, задачу будем решать двумя методами.

1. М е т о д в е к т о р н ы х д и а г р а м м.

Токи ветвей находятся сразу: , , .

Для определения общего тока необходимо построить векторную диаграмму (рис. 2.31, б). Построение начинаем с вектора напряжения, так как оно является общим для всех ветвей. Из векторной диаграммы имеем

или ,

где – полная проводимость цепи, равная

.

Разность индуктивной и емкостной проводимостей представляет собой общую реактивную проводимость цепи .

Рис. 2.31. Электрическая цепь и ее векторная диаграмма

Векторы токов на диаграмме образуют треугольник токов. Его горизонтальный катет, представляющий проекцию вектора тока на вектор напряжения, называется активной составляющей тока и равен току в активном элементе цепи: (рис. 2.32, а). Проекция вектора тока на направление, перпендикулярное напряжению, – это реактивная составляющая тока. Она равна суммарному току реактивных элементов и определяется как разность длин векторов: (см. рис. 2.31,б и 2.32, а).

Рис. 2.32. Треугольники токов и проводимостей

Разделив все стороны треугольника токов на , получим треугольник проводимостей (рис. 2.32, б), стороны которого связаны следующими соотношениями:

, , , . (2.29)

2. С и м в о л и ч е с к и й м е т о д.

Раньше были получены следующие формулы:

, , .

Подставляя их в уравнение первого закона Кирхгофа, получаем:

или ,

где – комплексная проводимость цепи, равная

Пример 2.12. Для цепи, показанной на рис. 2.33, а, рассчитать токи, угол сдвига фаз между током и напряжением на входе цепи, построить векторную диаграмму. Числовые значения параметров цепи: В, Ом, мкФ, с-1.

Рис. 2.33. Электрическая цепь и ее векторная диаграмма

Р е ш е н и е.

А, Ом,

А, А.

Векторная диаграмма приведена на рис. 2.33, б.

Угол сдвига фаз .

Величину общего тока можно найти иначе:

См, См,

См, А.

Пример 2.13. Начертить цепь, векторная диаграмма которой изображена на рис. 2.34, а.

Р е ш е н и е задачи показано на рис. 2.34, б.

Рис. 2.34. Векторная диаграмма и соответствующая ей электрическая цепь

Пример 2.14. Чему равно показание амперметра А на входе цепи в схемах рис. 2.35, если амперметры А1 и А2 во всех случаях показывают соответственно 4 и 3 А?

Рис. 2.35. Измерение тока в электрической цепи

Предлагаем для каждого случая самостоятельно построить векторную диаграмму и убедиться в правильности приведенных ответов: а) 5А, б) 7А, в) 1А.

2.14. Пассивный двухполюсник в цепи синусоидального тока.Эквивалентные сопротивления и проводимости

На рис. 2.36 показан пассивный двухполюсник, состоящий из активных и реактивных элементов. Действующие значения напряжения , тока и угол сдвига фаз между ними известны.

Рис. 2.36. Пассивный двухполюсник

Построим по этим значениям векторную диаграмму и, спроектировав вектор напряжения на вектор тока и перпендикулярное к нему направление, получим треугольник напряжений, образованный сторонами , и (рис. 2.37, а).

Как и раньше, и будем называть активной и реактивной составляющими напряжения. Изображенная в таком виде диаграмма соответствует схеме, показанной на рис. 2.37, б. Действительно, для нее , и . Схема называется последовательной схемой замещения или последовательной эквивалентной схемой пассивного двухполюсника, а ее параметры , и – эквивалентными сопротивлениями двухполюсника.

Рис. 2.37. Векторная диаграмма и соответствующая ей последовательная эквивалентная схема

Треугольник, образованный сторонами , и и подобный треугольнику напряжений, представляет собой треугольник сопротивлений (рис. 2.28, б), для которого справедливы формулы (2.27).

Теперь разложим в е к т о р т о к а на две составляющие – активную , направленную по вектору напряжения, и реактивную , перпендикулярную к нему (рис. 2.38, а). Такой векторной диаграмме соответствует параллельная схема замещения двухполюсника (рис. 2.38, б). Ее параметры , и называются эквивалентными проводимостями. Токи в элементах и мы и представляем как активную и реактивную составляющие общего тока: , . Из треугольника токов (рис. 2.38, а) получается треугольник проводимостей (рис. 2.32, б), стороны которого связаны между собой формулами (2.29).

а) б)

Рис. 2.38. Параллельная эквивалентная схема и ее векторная диаграмма

Получим условия эквивалентности приведенных схем.

Для последовательной цепи , для параллельной , а так как токи и напряжения в обеих схемах одинаковы, то

и , (2.30)

т.е. в любой электрической цепи полная проводимость есть величина, обратная полному сопротивлению.

Из сопоставления формул (2.27) и (2.29) можно записать:

и .

Рассматривая последние выражения совместно с (2.30), можно получить две группы формул:

Формулы перехода от последовательной эквивалентной схемы к параллельной:

Формулы перехода от параллельной эквивалентной схемы к последовательной:

(2.31)

(2.32)

Обращаем внимание на то, что каждая из проводимостей G и B зависит от обоих сопротивлений – активного и реактивного. В свою очередь, каждое из сопротивлений определяется обеими проводимостями. Соотношения G = 1/R и B = 1/x справедливы только в частном случае, первое – при х = 0, второе – при R = 0.

Следует отметить, что активная и реактивная составляющие напряжения и тока физически не существуют, измерить их нельзя. Они относятся только к соответствующим эквивалентным схемам замещения и находятся расчетом. Более того, проектируя, например, вектор тока на различные напряжения, мы получим для него разные составляющие.

Пример 2.15. Найти общее сопротивление цепи, состоящей из параллельно соединенных активного R = 30 Ом и индуктивного х = 40 Ом сопротивлений (рис. 2.39, а).

Рис. 2.39. Схемы к примерам 2.15–2.17

Р е ш е н и е. Так как в левой ветви реактивного сопротивления нет, то ее проводимость в соответствии с (2.31) равна G = 1/R. Аналогично, во второй ветви B = 1/x. Полная проводимость цепи . В соответствии с (2.30) полное сопротивление цепи

Ом.

Пример 2.16. Рассчитать общее сопротивление цепи, состоящей из параллельно соединенных индуктивности L = 0,478 Гн и емкости С = 31,85 мкФ (рис. 2.39, б). Частота питающего напряжения f = 50 Гц.

Р е ш е н и е. Определяем сопротивления ветвей:

Ом,

Ом.

Так как в ветвях отсутствуют активные сопротивления, то их проводимости соответственно равны BL = 1/xL и BC = 1/xС. Полная эквивалентная проводимость цепи не содержит активной составляющей и равна

.

Полное эквивалентное сопротивление

Ом.

В рассматриваемой цепи активных элементов нет, она носит чисто реактивный характер. Он может быть индуктивным или емкостным. Знак минус в ответе свидетельствует о последнем, т.е. вся цепь может быть заменена конденсатором емкостью

мкФ.

Пример 2.17. Амперметр А, вольтметр V и фазометр , включенные в цепь катушки (рис. 2.39, в), дали следующие показания: U = 220 В, I = 4,4 А, cos = 0,8. Частота питающего напряжения 50 Гц. Определить параметры последовательной и параллельной схем замещения катушки.

Р е ш е н и е. Находим параметры последовательной эквивалентной схемы:

Ом, Ом,

Ом.

Рассчитываем элементы параллельной эквивалентной схемы:

См, См,

См.

После определения эквивалентных сопротивлений эквивалентные проводимости можно было найти иначе, по формулам (2.31):

См, См,

См.

Рис. 2.40. Расчетная схема

Пример 2.18. Рассчитать токи в схеме, приведенной на рис. 2.40.

В,

Ом,

Ом,

Ом,

Ом,

Ом,

Ом,

Ом.

Р е ш е н и е. Определяем полные сопротивления второй и третьей ветвей:

Ом, Ом.

Преобразуем эти ветви в эквивалентные параллельные (рис. 2.41, а).

Рис. 2.41. Преобразования электрической цепи

Их проводимости:

См, См,

См, См.

Суммируем активные и реактивные проводимости параллельных ветвей: См, См (см. рис. 2.41, б).

Определяем эквивалентные сопротивления участка (рис. 2.41, в):

Ом, Ом,

Ом,

и полное сопротивление цепи:

Ом.

Ток на входе цепи I1 = U/z = 220/41,53 = 5,297 A.

Напряжение на участке Uab= I1zab= 119,7 В.

Токи второй и третьей ветвей:

А, А.

Еще раз напоминаем, что для численных значений токов и напряжений законы Кирхгофа неприменимы: .