Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Нейроуправление,л.р..doc
Скачиваний:
43
Добавлен:
16.04.2015
Размер:
720.38 Кб
Скачать

Однослойные искусственные нейронные сети

Рис. 3 Однослойная нейронная сеть

Хотя один нейрон и способен выполнять простейшие процедуры распознавания, сила нейронных вычислений проистекает от соединений нейронов в сетях. Простейшая сеть состоит из группы нейронов, образующих слой, как показано в правой части рис. 3. Отметим, что вершины-круги слева служат лишь для распределения входных сигналов. Они не выполняют каких-либо вычислений, и поэтому не будут считаться слоем. По этой причине они обозначены кругами, чтобы отличать их от вычисляющих нейронов, обозначенных квадратами. Каждый элемент из множества входов Х отдельным весом соединен с каждым искусственным нейроном. А каждый нейрон выдает взвешенную сумму входов в сеть. В искусственных и биологических сетях многие соединения могут отсутствовать, все соединения показаны в целях общности. Могут иметь место также соединения между выходами и входами элементов в слое.

      1. Многослойные искусственные нейронные сети

Более крупные и сложные нейронные сети обладают, как правило, и большими вычислительными возможностями. Хотя созданы сети всех конфигураций, какие только можно себе представить, послойная организация нейронов копирует слоистые структуры определенных отделов мозга. Оказалось, что такие многослойные сети обладают большими возможностями, чем однослойные, и в последние годы были разработаны алгоритмы для их обучения.

Рис. 4 Двухслойная нейронная сеть

Многослойные сети могут образовываться каскадами слоев. Выход одного слоя является входом для последующего слоя. Подобная сеть показана на рис. 4.

Многослойная сеть состоит из нейронов, расположенных на разных уровнях, причем, помимо входного и выходного слоев, имеется еще, как минимум, один скрытый слой.

На рис. 5 представлена многослойная НС.

Рис. 5 Многослойная нейронная сеть

Входной слой (input layer) нейронных элементов выполняет рас­пределительные функции. Выходной слой (output layer) нейронов слу­жит для обработки информации от предыдущих слоев и выдачи резуль­татов. Слои нейронных элементов, расположенные между входным и выходным слоями, называются скрытыми (hidden layers). Как и выходной слой, скрытые слои являются обрабаты­вающими.

Число слоев в многослойной нейронной сети характеризует, ка­ким образом входное пространство может быть разбито на подпро­странства меньшей размерности. Так, двухслойная нейронная сеть с одним слоем нелинейных нейронов разбивает входное пространство образов на классы при помощи гиперплоскости. Трехслойная нейронная сеть, где в качестве двух последних слоев используются нейронные элементы с нелинейной функцией активации, позволяет формировать любые выпуклые области в пространстве решений. Четырехслойная нейронная сеть, которая имеет три нелинейных слоя, дает возможность получать об­ласть решений любой формы и слож­ности, в том числе и невыпуклой.

Рекуррентные нейронные сети

Рекуррентными нейронными сетями называются такие сети, в ко­торых выходы нейронных элементов последующих слоев имеют синаптические соединения с нейронами предшествующих слоев. Это приво­дит к возможности учета результатов преобразования нейронной сетью информации на предыдущем этапе для обработки входного вектора на следующем этапе функционирования сети. Рекуррентные сети могут использоваться для решения задач прогнозирования и управления.

Архитектура рекуррентных сетей

Существуют различные варианты архитектур рекуррентных ней­ронных сетей.

Сеть Джордана: В 1986 г. Джордан (Jordan) предложил рекур­рентную сеть (рис. 6), в которой выходы нейронных элементов по­следнего слоя соединены посредством специальных входных нейронов с нейронами промежуточного слоя. Такие входные нейронные эле­менты называются контекстными нейронами (context units). Они рас­пределяют выходные данные нейронной сети на нейронные элементы промежуточного слоя.

Рис. 6 Архитектура рекуррентной ней­ронной сети с обратными связями от нейро­нов выходного слоя

Число контекстных нейронов равняется числу выходных ней­ронных элементов рекуррентной сети. В качестве выходного слоя та­ких сетей используются нейронные элементы с линейной функцией активации. Тогда выходное значение j-го нейронного элемента последнего слоя определяется по формуле

где vij - весовой коэффи­циент между i-м нейроном промежуточного и j-м ней­роном выходного слоев; Pi(t)- выходное значение i-го нейрона промежуточ­ного слоя; tj - пороговое значение j-го нейрона вы­ходного слоя. Взвешенная сумма i-гo нейронного элемента промежуточного слоя определяется следующим образом:

где wij - весовой коэффициент между j-м нейроном входного и i-м нейроном промежуточного слоев; р - число нейронов выходного слоя; wki— весовой коэффициент между k-м контекстным нейроном и i-м нейроном промежуточного слоя; T - пороговое значение i-го нейрона промежуточного слоя; n - размерность входно­го вектора.

Тогда выходное значение i-го нейрона скрытого слоя

В качестве функции не­линейного преобразования F обычно используется гипер­болический тангенс или сигмоидная функция.

Для обучения рекуррентных нейронных сетей применяется алго­ритм обратного распространения ошибки.

Алгоритм обучения рекуррентной нейронной сети в общем слу­чае состоит из следующих шагов:

1. В начальный момент времени t = 1 все контекстные нейроны устанавливаются в нулевое состояние - выходные значения прирав­ниваются нулю.

2. Входной образ подается на сеть и происходит прямое распро­странение его в нейронной сети.

3. В соответствии с алгоритмом обратного распространения ошибки модифицируются весовые коэффициенты и пороговые значе­ния нейронных элементов.

4. Устанавливается t = t +1 и осуществляется переход к шагу 2. Обучение рекуррентной сети производится до тех пор, пока сум­марная среднеквадратичная ошибка сети не станет меньше заданной.

Рециркуляционные нейронные сети

Рециркуляционные сети характеризуются как прямым Y = f(X), так и обратным X = f(У) преобразованием информации. Задача тако­го преобразования - достижение наилучшего автопрогноза или само­воспроизводимости вектора X. Рециркуляционные нейронные сети применяются для сжатия (прямое преобразование) и восстановления исходной (обратное преобразование) информации. Такие сети явля­ются самоорганизующимися в процессе работы, где обучение произ­водится без учителя.

Архитектура рециркуляционной нейронной сети

Рециркуляционная нейронная сеть представляет собой совокупность двух слоев нейронных элементов, которые соединены между собой двунаправленными связями (рис. 7).

Рис. 7 Архитектура рециркуляцион­ной нейронной сети

Каждый из слоев нейрон­ных элементов может использо­ваться в качестве входного или выходного. Если слой нейрон­ных элементов служит в качест­ве входного, то он выполняет распределительные функции. Иначе нейронные элементы слоя являются обрабатывающи­ми. Весовые коэффициенты, соответствующие прямым и обратным связям, характери­зуются матрицей весовых коэффициентов W и W'. Для наглядности рециркуляционную сеть можно представить в развер­нутом виде, как показано на рис.8.

Такое представление сети является эквивалентным и характеризует полный цикл преобразования информации. При этом промежуточный слой нейронных элементов производит кодирование (сжатие) входных данных X, а последний слой - восстановление сжатой информации Y. Слой нейронной сети, соответствующий матрице связи W, назовем пря­мым, а соответствующий матрице связей W' - обратным.

Рис. 8 Эквивалентное представление ре­циркуляционной сети

В качестве функции активации нейронных элементов F может использоваться как линейная, так и нелинейная функции.

Релаксационные НС

Релаксационные нейронные сети характеризуются прямым и обратным распро­странением информации между слоями нейронной сети. В основе функционирования лежит итеративный принцип работы. На каждой итерации процесса происходит обработка данных, полученных на предыдущем шаге. Такая циркуляция информации продолжается до тех пор, пока не установится состоя­ние равновесия. При этом состояния нейронных элементов перестают изменяться и ха­рактеризуются стационарными значениями.

Нейронные сети Хопфилда

Нейронная сеть Хопфилда реализует существенное свойст­во автоассоциативной памяти - восстановление по искаженному (зашумленному) образу ближайшего к нему эталонного. Входной вектор используется как начальное состояние се­ти, и далее сеть эволюционирует согласно своей динамике. При­чем любой пример, находящийся в области притяжения хранимого образца, может быть использован как указатель для его восста­новления. Выходной (восстановленный) образец устанавливается, когда сеть достигает равновесия.

Обучение сети Хопфилда производится по правилу Хебба.

Структура сети Хопфилда (рис.9) состо­ит из одного слоя нейронов, число которых определяет число вхо­дов и выходов сети. Выход каждого нейрона соединен с входами всех остальных нейронов. Выходные сигналы нейронов являются одновременно входными сигналами сети: Xi(k)=Yi(k-1)

Основные зависимости, определяющие сеть Хопфилда, можно представить в виде

с начальным условием yi(0) = xj. В процессе функционирования сети Хопфилда можно выделить два режима: обучения и классификации. В режиме обучения на основе известных обучающих выборок х подбираются весовые коэффициенты wij. В режиме классификации при зафиксированных зна­чениях весов и вводе конкретного начального состояния нейронов у(0) = х возникает переходный процесс, протекающий в соответствии с выраже­нием (Формула выше) и завершающийся в одном из локальных минимумов, для которого y(k) = y(k-l).

Для безошибочной работы сети Хопфилда число запоми­наемых эталонов N не должно превышать 0,15n (n-число нейронов).

Рис. 9 Структура нейронной сети Хопфилда

Динамическое изменение состояний сети может быть вы­полнено, двумя способами: синхронно и асин­хронно. В первом случае все элементы модифицируются одно­временно на каждом временном шаге, во втором - в каждый мо­мент времени выбирается и подвергается обработке один эле­мент. Этот элемент может выбираться случайно.

Калькулятор

Сервис бесплатной оценки стоимости работы

  1. Заполните заявку. Специалисты рассчитают стоимость вашей работы
  2. Расчет стоимости придет на почту и по СМС

Нажимая на кнопку, вы соглашаетесь с политикой конфиденциальности и на обработку персональных данных.

Номер вашей заявки

Прямо сейчас на почту придет автоматическое письмо-подтверждение с информацией о заявке.

Оформить еще одну заявку