Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fizika-2.docx
Скачиваний:
40
Добавлен:
17.04.2015
Размер:
997.73 Кб
Скачать

§1.4. Третье уравнение Максвелла. Закон сохранения заряда.

 

Третье уравнение Максвелла определяет источники электрического поля. Физический смысл этого уравнения состоит в том, что электрическое поле в некоторой области пространства связано с электрическим зарядом внутри этой поверхности.

Исходным для этого уравнения является уравнение Гаусса, которое говорит о том, что поток вектора через замкнутую поверхностьS равен заряду Q, заключенному в данной поверхности:

где ρ – объемная плотность заряда.

Подставим 1.24 в 1.23, получим

Уравнение 1.25 есть третье уравнение Максвелла в интегральной форме.

Для того чтобы получить интегральную форму, воспользуемся теоремой Гаусса-Остроградского, которая устанавливает связь между объемным и поверхностным интегралом:

Применим 1.26 к левой части уравнения  1.25, получим

Данное равенство справедливо только в том случае, когда равны подынтегральные функции:

Уравнение 1.27 – третье уравнение Максвелла в интегральной форме.

Заменим

и получим следующее уравнение

Для переменных полей заряды и токи связаны соотношением

 

где       - сила тока проводимости;

            jпр – плотность тока проводимости;

 

В итоге, с учетом этих соотношений получим

 

Воспользуемся теоремой Гаусса – Остроградского

Или

Уравнение 1.30 выражает закон сохранения заряда:

            Источник тока проводимости – это изменение заряда во времени.

Уравнение 1.30 также является необходимым дополнением к системе уравнений Максвелла, так как в этой системе необходимо было связать ρ и . Это уравнение можно вывести, воспользовавшись уже имеющимися уравнениями Максвелла. Запишем систему уравнений Максвелла

Применим оператор div к первому уравнению Максвелла:

 

§1.5. Четвертое уравнение Максвелла.

 

Четвертое уравнение Максвелла устанавливает отсутствие магнитных зарядов и то, что магнитные силовые линии всегда замкнуты. В интегральном виде этот факт записывается в виде уравнения

Поток вектора магнитной индукции через замкнутую поверхность равен нулю, поскольку магнитных зарядов одного знака в природе не обнаружено.

Применяя теорему Гаусса – Остроградского

Или

Уравнение 1.31 – это четвертое уравнение Максвелла в дифференциальной форме.

38.Волны и их виды.Уравнение плоской волны.Энергия волны

Волны, изменения состояния среды (возмущения), распространяющиеся в этой среде и несущие с собой энергию.

Виды волн. Поперечные. Продольные. Если смещение частиц совершается вдоль направления распространения волны, то такие волны называются продольными. Если смещение частиц происходит перпендикулярно направлению распространения волны, то волна называется поперечной Поперечная волна может распространятся только в твёрдой среде, потому что для её распространения нужна деформация сдвига.

усть v* - скорость частиц среды в какой-то момент времени в какой-то точке пространства (или, точнее, в физически малом объёме dV). Объёмная плотность кинетической энергии Wkзапишется (r - плотность среды):

Объёмная плотность потенциальной энергии упруго деформируемой среды равна:

 - фазовая скорость волны,  - относительная деформация среды.

Учитывая, что:

               

имеем:

   –это уравнение плоской волны.

      Таким образом, x  есть смещение любой из точек с координатой x в момент времени t. При выводе мы предполагали, что амплитуда колебания  . Это будет, если энергия волны не поглощается средой.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]