Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
методички / Строительное материаловедение И.А.Рыбьев.doc
Скачиваний:
593
Добавлен:
26.04.2015
Размер:
5.64 Mб
Скачать

9.1.3. Воздушные вяжущие вещества и их производство

Гипсовые вяжущие материалы — воздушные вещества, получае­мые из гипсового камня или ангидрита. По своим технико-экономи­ческим показателям они относятся к эффективным строительным материалам, что обусловлено огромными запасами природного сы­рья, относительно низким расходом топлива при их получении, ко­роткими сроками схватывания и твердения. Весь технологический цикл изготовления изделий на основе гипсовых вяжущих веществ можно осуществлять в заводских условиях.

Подготовка сырья заключается в его тонком измельчении либо в грубом дроблении до размеров щебня или более крупных кусков (до 70—300 мм), что зависит от типа аппарата для последующей тепловой обработки. Основной операцией является обжиг сырья с целью частичной или полной его дегидратации. Он может быть низ­ко- и высокотемпературным.

При низкотемпературной тепловой обработке сырья в аппара­тах, сообщающихся с атмосферой (например, в открытых варочных котлах, сушильных барабанах, шахтных печах и др.), в которых тем­пература поддерживается на уровне 110—180°С, продукт обжига становится полуводным гипсом CaSO4∙0,5H2O. Эта разновидность продукта обжига называется гипсом β-модификации и при измель­чении его в тончайший порошок образуется вяжущее вещество, на­зываемое строительным гипсом (рис. 9.1).

При низкотемпературной тепловой обработке сырья в гермети­чески закрытых аппаратах (пропарниках, автоклавах и др.), в кото­рых температура поддерживается на уровне 95—100°С, а давление пара — повышенное, равное 0,15—0,3 МПа (в автоклавах до 0,6 МПа), продукт после частичной дегидратации также становится полугидратом CaSO4∙0,5H2O, но другой, α-модификации (хорошо просушенного и охлажденного полугидрата). При измельчении в тончайший порошок образуется вяжущее вещество, называемое вы­сокопрочным гипсом. Тот же эффект получается при тепловой об­работке (кипячении) сырья в водных растворах некоторых солей, например хлористых кальции и магнии.

Рис. 9.1. Схема производства строительного гипса с применением варочных котлов: 1 — мостовой грейферный кран; 2 — бункер гипсового камня; 3 — лотковый питатель; 4 — щековая дробилка; 5 — ленточные конвейеры; 6 — бункер гипсового щебня; 7 — тарельчатый пита­тель; 8 — шахтная мельница; 9 — сдвоенный циклон; 10 — батарея циклонов; 11 — вентилятор; 12 — рукавные фильтры; 13 — пылеосадительная камера; 14 — шнеки; /5 — бункер сырого моло­того гипса; 16 -— камера томления; 17 — гипсоварочный котел; 18 — элеватор; 19 — бункер гото­вого гипса; 20 — скребковый конвейер

Различие между обеими модификациями низкотемпературного гипса состоит -преимущественно в размере и характере кристаллов: кристаллы α-модификации — крупные в виде длинных прозрачных игл или призматические, которые формировались в условиях капе­льножидкой водной среды, кристаллы β-модификации — мелкие с нечетко выраженными гранями. Если первые кристаллы полностью обезвоживаются только при температурах 200—210°С, то вторые достигают этого уже при температурах 170—180°С. В обоих случаях обезвоживания не наблюдается видимых изменений в кристалличе­ских структурах. Обезвоженные полугидраты имеют ту же кристал­лическую решетку, что и полугидрат. Для производства высоко­прочного гипса требуется сырье (камень) первого сорта.

Качественные характеристики получаемых двух видов гипса не одинаковы по ряду показателей. Строительный гипс — порошок бе­лого цвета плотностью 2,2—2,5 г/см3. Его средняя плотность в рых­лом состоянии 800—1100 и в уплотненном — 1250—1450 кг/м3. Он обладает высокой водопотребностью: для получения теста нормаль­ной густоты необходимо 50—70% воды по массе, а удобоукладываемое тесто в производственных условиях требует до 60—80% воды от массы вяжущего вещества. По срокам схватывания гипс различают: быстросхватывающийся (начало через 2 мин, конец — не позднее 15 мин), нормально-схватывающийся (начало через 6 мин, конец — не позднее 30 мин), медленносхватывающийся (начало — не ранее 20 мин, окончание схватывания не нормировано). По пределу проч­ности при сжатии через 1,5 ч после изготовления образцов имеется 12 марок — от Г-1 до Г-25 (цифры обозначают минимально допус­тимый предел, МПа). Эта разновидность гипса имеет низкую водо­стойкость, при увлажнении он склонен к ползучести. При более тон­ком помоле продукта обжига из β-полугидрата сульфата кальция получают гипс формовочный, при использовании сырья повышен­ной чистоты — медицинский гипс.

Высокопрочный гипс имеет плотность 2,72—2,75 г/см3, а его средняя плотность — в тех же пределах, что и гипса строительного. Водопотребность для нормальной густоты теста — около 40—45%, т. е. более низкая, что вызвано его пониженной удельной поверхно­стью и повышенной крупностью кристаллов. Он обладает повышен­ной прочностью при сжатии (свыше 25—30 МПа), но не водостоек и имеет тенденцию к ползучести во влажном состоянии (1—3% влаги). Прочность при растяжении в 6—8 раз меньше, чем при сжатии об­разцов в сухом состоянии. В последние годы в нашей стране были проведены исследования (С.В. Мамбетшаев, А.А. Моров) по расши­рению сырьевой базы за счет снижения содержания требований к содержанию двугидрата кальция (вплоть до 3-го сорта) за счет улуч­шенной технологии со снижением до минимума остаточного и вто­ричного двугидрата и переводом их в β-модификацию гипса. Полу­чается улучшенный высокопрочный гипс для изготовления гипсобетона, раствора, арболита и других изделий.

Строительный и формовочный гипс с успехом используют при производстве перегородочных панелей, сухой штукатурки, гипсо-литных деталей, вентиляционных коробов, огнезащитных и звуко­поглощающих изделий и др.

При температурах 450—750°С растворимый ангидрит переходит в нерастворимый, вследствие чего тесто из порошкообразного ан­гидрита и воды практически не твердеет. На его базе основано про­изводство ангидритового цемента — продукта обжига природного двуводного гипса при температуре 600—700°С с последующим тон­ким помолом с добавлением минеральных веществ. К таким добав­кам относятся смесь сульфата и бисульфата натрия с медным купо­росом, известь (2—5%), основной доменный шлак (10—15%) и др. В присутствии указанных добавок ангидрит взаимодействует с во­дой и приобретает способность схватываться и твердеть. Предел прочности при сжатии у ангидритового цемента составляет 10—20 МПа, начало схватывания наступает не ранее 30 мин, ко­нец — не позднее 24 ч.

Гипс высокообжиговый (экстрих-гипс) получают при обжиге гипсового сырья до температур 800—950°С, когда продукт обжига вновь приобретает свойства схватываться и твердеть без каких-либо добавочных веществ. Эта «добавка» возникает в обжигаемом сырье вследствие термической диссоциации сернокислого кальция (2CaSO42CaO+ 2SO2+O2) в виде свободного оксида кальция. Отдельные специалисты полагают, что вместо свободного оксида кальция имеетсяmCaSO4nH2O. Тонко измельченный порошок и является высокообжиговым гипсом (эстрих-гипсом). Начало схва­тывания теста из эстрих-гипса наступает не ранее 2 ч, но его можно ускорить добавками, например КН8О4; предел прочности при сжа­тии составляет 10—20 МПа, а водостойкость несколько выше, чем у низкотемпературных гипсовых вяжущих и ангидритового цемента. Его применяют для изготовления декоративных и отделочных мате­риалов, например, искусственного мрамора, штукатурных раство­ров, устройства бесшовных полов и подготовки оснований под ли­нолеум и др.

В целях улучшения качества эстрих-гипса некоторыми исследо­вателями (А.В. Волженсжим и др.) рекомендуется применять сырье с содержанием до 5—7% доломитов и известняков и до 7—10% глини­стых примесей. Тогда возникает некоторое количество силикатов, алюминатов и ферритов кальция, повышающих водостойкость го­тового продукта обжига. Но ее можно повысить и введением гидро­фобных добавок или минеральных — шлака, извести, портландце­мента и др.

Воздушная строительная известь — вяжущее, получаемое равно­мерным и умеренным (до спекания) обжигом горных пород, содер­жащих большее или меньшее количество углекислого кальция.

Среди таких пород — известняки, мел, доломитизированные изве­стняки, имеющие весьма ограниченное содержание (до 6% по массе) глинистых примесей. Имеются в породах и другие примеси—углекис­лый магний, кварц, оксид железа. Для получения воздушной извести требуется поддерживать температуру обжига на уровне 900—1200°С, что зависит в основном от состава сырья. Обжиг проводится до полно­го удаления углекислого газа в соответствии с уравнением термиче­ской диссоциации: CaCO3+ 178 кДж =CaO+CO2. Образуется белое огнестойкое вещество, техническое название которого — негашеная известь.

Сырье обжигают в печах различных конструкций: шахтных, вра­щающихся, циклонно-вихревых (во взвешенном состоянии), а также на движущихся агломерационных решетках. Распространен обжиг в шахтных печах, которые работают либо по пересыпному способу, либо с выносимыми топками (рис. 9.2). Они надежны в эксплуата­ции, позволяют использовать местные виды топлива и при меньшем его расходе на единицу готовой продукции. Загружаемый в шахт­ную печь известняк имеет обычно размеры 80—200 мм, а при обжиге во вращающейся печи используют дробле­ный известняк размером 5—20 и 20—40 мм. В процессе обжига сырья протекает декарбо­низация. При выходе из печи размеры обо­жженной (комовой) извести сохраняются в основном прежними до погрузки в печь, но за счет потери CO2становятся высокопори­стыми и легкими. При дальнейшем измельче­нии комовой извести ее предварительно дро­бят до размера 15—20 мм. Далее — помол в шаровых одно- и многокамерных мельницах по замкнутому циклу с рассевом продукта в сепараторе. Получаемый продукт носит на­звание молотой негашеной извести того же состава (оксида кальция).

Молотая негашеная известь получила применение в качестве вяжущего вещества в результате исследований И.В. Смирнова в конце XIX— началеXXвв. Однако работать с ней сложнее, чем с гашеной известью, но по качеству она выше, являясь более активной в формировании структур ИСК.

Гашение комовой извести с превращени­ем ее в тончайший порошок — уникальный технологический прием химического диспер­гирования. Оно производится в специальных гидраторах периодического или непрерывно­го действия. В условиях стройплощадки га­шение небольшого объема извести произво­дят в творильных ящиках с сеткой для сцеживания разжиженного известкового тес­та (известкового молока) в гасильную яму, где оно выдерживается не менее двух недель. Опасно применять тесто, в котором имеется непогасившаяся известь.

Реакция гашения протекает с выделением большого количества теплоты: CaO+H2O→Ca(OH)3+q, гдеq — количество теплоты, равное 1160 кДж (277 ккал) на 1 кг оксида кальция. Эта теплота вы­зывает вскипание воды, что послужило основанием именовать нега­шеную известь кипелкой. Погасившаяся известь превращается в тонкий рыхлый порошок со значительным увеличением в объеме (в 2,5—3 раза) — пушонку. При избытке воды (например, больше чем в среднем 1,5 л на 1 кг кипелки) известь переходит в известковое тесто; рабочее состояние — при 50% воды.

Рис. 9.2. Шахтная печь для обжига извести: 1 — шахта; 2 — загрузочный механизм; 3 — дымосос; 4 — гребень для подачи воздуха; 5 — разгрузочный механизм

Таким образом различают следующие виды воздушной извести: известь негашеная комовая, известь негашеная молотая, известь га­шеная (пушонка), известковое тесто. Основным компонентом воз­душной извести служит оксид кальция, которому практически все­гда сопутствует оксид магния. По содержанию оксида магния (MgO) известь разделяют на маломагнезиальную (меньше 5%), маг­незиальную (5—20%) и доломитовую (20—40%). Присутствие окси­да магния, который находится обычно как бы в пережженном состо­янии, замедляет скорость гашения извести. Различают известь быстрогасящуюся — при скорости ее гашения меньше 8 мин, сред-негасящуюся, если скорость не превышает 25 мин, и медленногася-щуюся — если скорость гашения составляет не менее 25 мин. За ско­рость гашения принимается время, прошедшее от момента приливания воды к извести до начала снижения максимальной тем­пературы, что определяется в лаборатории завода.

В соответствии с ГОСТ 9179-77 строительная воздушная из­весть подразделяется на три сорта для негашеной извести, на два сорта для гашеной извести. Содержание активных СаО + MgO(в пересчете на сухое вещество) для негашеной извести без добавок должно быть соответственно для 1, 2 и 3-го сортов 90, 80 и 70%; для негашеной извести с добавками для 1-го и 2-го сортов — 65 и 55%. Строго нормируется допустимое содержание непогасивших-ся частиц, (в %). Прочность извести стандартом не нормируется, так как она невелика; у пушонки через 28 суток 0,5—1,0 МПа, у молотой извести 1,0—6,0 МПа. Средняя плотность пушонки равна 400—450 кг/м3.

Известь всех видов находит широкое применение в качестве вя­жущего и водоудерживающего компонента в строительных раство­рах для кладки, штукатурки, а также в производстве строительных материалов как составная часть смешанных вяжущих веществ и из­делий, например для изготовления силикатных материалов авто­клавного твердения. Основное количество извести, как и гипсовых вяжущих веществ, используют в производстве штучных и крупнога­баритных изделий, в керамической промышленности, стеклоделии, металлургической промышленности и других отраслях.

Магнезиальные вяжущие вещества — продукты умеренного об­жига природных карбонатных пород: магнезита и доломита с по­лучением после тонкого помола соответственно каустического магнезита при температурах 750—850°С и каустического доломи­та при температурах 650—750°С. При обжиге природный магне­зит разлагается и превращается в оксид магния по реакции:MgCO3→MgO+ СО2.

При условии полного выделения углекислого газа качество каус­тического магнезита тем выше, чем ниже температура обжига.

Оксид магния может получаться также обжигом металлургиче­ского магнезита при температурах 1100—1300°С, но вяжущими свойствами такой «намертво обожженный» магнезит почти не обла­дает и используется в качестве сырья для производства магнезито­вых огнеупоров.

В каустическом магнезите содержится оксида магния до 85% по массе и более, тогда как допустимое содержание оксида кальция ли­митируется 2—5%. Он представляет собой тонкий порошок белого или желтоватого цвета. Начало схватывания должно наступать не ранее 20 мин, а конец схватывания — не позднее 6 ч от момента за-творения теста. Его истинная плотность 3,15—3,40 г/см3, что значи­тельно выше, чем у извести и гипсов, а также выше, чем у портланд­цемента. По пределу прочности при растяжении образцов из теста нормальной густоты каустический магнезит должен иметь не менее 1,5 МПа. Предел прочности при сжатии образцов-кубиков из каус­тического магнезита состава 3:1 (3 части магнезита, 1 часть (по мас­се) сосновых опилок) изменяется от 30 до 50 МПа и выше.

Вторая разновидность магнезиального вяжущего вещества — каустический доломит — получается в соответствии с термохимиче­ской реакцией разложения: СаСО3∙MgCO3→ СаСО3+MgO+CO2. Видно, что при обжиге природный доломит разлагается с образова­нием в основном оксида магния, а большая часть карбоната каль­ция остается не разложившейся, так как температура его диссоциа­ции, что уже отмечалось выше, равна около 900°С. В получаемом после обжига и помола каустическом доломите карбонат кальция остается в виде неактивного порошкообразного наполнителя, поэ­тому реакционная активность каустического магнезита выше, чем каустического доломита, и соответственно выше его прочность (прочность каустического доломита 10—30 МПа).

Оба вида магнезиальных вяжущих веществ затворяют в тесто не чистой водой, как другие неорганические вяжущие материалы, а во­дным раствором некоторых солей — хлористого магния, сернокис­лого магния, сернокислого железа, количество которых соответст­вует определенной плотности раствора. Получаемое после затворения вяжущее именуется цементом Сореля.

Магнезиальные вяжущие вещества характеризуются повышен­ной прочностью сцепления с каменными и древесными материала­ми, особенно прочностью на разрыв, например под действием цент­робежных сил. Поэтому их применяют в абразивном производстве для изготовления жерноточильных кругов, брусьев и др. Главное их назначение в строительстве — изготовление ксилолита для бесшов­ных полов или фибролита для производства теплоизоляционных из­делий и перегородок. Их используют также для растворов при шту­катурных работах, на изготовление подоконных плит, лестничных ступеней, кровельных плит и других строительных деталей.

Растворимое стекло и кислотоупорный цемент. Растворимое (жидкое) стекло представляет собой щелочной натриевый или ка­лиевый силикат переменного химического состава, выражаемого общей формулойR2O∙nSiO2, гдеRможет бытьNaилиK. Величинап — силикатный модуль, имеющий значение от 2,56 до 3,00, в зави­симости от чего меняются основные свойства растворимого стекла. Жидкое стекло склеивает и твердеет на воздухе вследствие высыха­ния, а также выделения аморфного или гелеобразного кремнезема под влиянием воды и углекислоты воздуха. Для ускорения тверде­ния и повышения водостойкости вводят различные катализаторы, главным образом кремнефтористый натрийNa2SiFe. Они ускоряют выделение геля кремневой кислоты.

Сырьем для изготовления растворимого стекла служат чистый кварцевый песок, сода Na2CO3или сульфат натрияNa2SO4. Значите­льно реже вторым компонентом служит поташK2СО3. После варки тщательно перемешанной сырьевой смеси в стекловаренных печах при температуре 1300—1400°С жидкое стекло быстро охлаждается на металлических листах. Образуются полупрозрачные, зеленовато­го цвета куски силикат-глыбы. Силикат-глыбу растворяют в авто­клавах паром под давлением 0,6—0,8 МПа и температуре 150°С, пе­реводя в состояние коллоидного раствора с истинной плотностью 1,40—1,55 г/см3(табл. 9.1). Перед применением жидкого стекла про­изводится дальнейшее разбавление раствора до необходимой конси­стенции.

Таблица 9.1. Свойства силикат-глыбы и жидкого стекла

Показатели

Виды стекла

содовое

содово-сульфатное

сульфатное

Истинная плотность

Модуль силикатный стекла

Содержание воды, %, не более

1,50—1,55

2,6—3,0

57

1,48—1,50

2,56—3,00

60

1,48—1,50

2,56—3,00

60

Растворимое стекло хранят в закрытой таре, а перевозить его экономичнее в твердом виде (силикат-глыбы) с последующим рас­творением на стройках в передвижных или стационарных установ­ках.

Этот вяжущий материал применяют для затворения кислотоу­порного цемента при изготовлении соответствующего бетона, пре­дохранения поверхности природных камней от выветривания, изготовления огнезащитных (для древесины) красок, замазок, устройства силикатированного шоссе на основе известнякового щебня, жароупорных бетонов, силикатизации (пропитки) грунто­вых оснований и других целей.

Кислотоупорный цемент представляет собой кварцевый порошко­образный материал. Он изготовляется путем совместного помола или тщательного смешения раздельно измельченных: кварцевого песка и кремнефтористого натрия в соотношении 10:1 (по массе); затворяется на водном растворе жидкого стекла (силиката натрия) и после затвер­девания способен в строительных растворах или бетонах противосто­ять воздействию большинства минеральных и органических кислот. Водный раствор стекла принимается с истинной плотностью 1,345, что соответствует 37° по Боме. Содержание оксида кремния в кисло­тоупорном цементе превышает 92%. Тонкость его помола нормирует­ся просеиванием на ряде стандартных сит. Обычно нормируются и требования к срокам схватывания цемента: начало для теста норма­льной густоты должно наступать не ранее 20 мин, конец — не позд­нее 8 ч от начала затворения. Прочностная характеристика цемента выражается пределом прочности при растяжении стандартных образ­цов после твердения их в течение 30 суток. При хранении на воздухе без кипячения или после кипячения в серной кислоте предел прочнос­ти должен быть не менее 2 МПа. Керосинопоглощение образцов в 10-дневном возрасте должно быть не более 15%. Прочность кислото­упорного бетона достигает 50—60 МПа, но он теряет прочность в воде, а в едких щелочах разрушается. В бетонах используют кислото­упорные заполнители: кварцевый песок, андезит и др. Такие бетоны применяют на химических заводах для изготовления резервуаров, ванн и других емкостей, а растворы — при футеровке кислотоупор­ными плитками различных конструкций.