Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭиЭ_доп.гл_2013.doc
Скачиваний:
32
Добавлен:
03.05.2015
Размер:
1.21 Mб
Скачать

8.3. Линия как элемент резонансной цепи.

Обычный колебательный контур с сосредоточенными параметрами при работе в диапазоне УКВ должен иметь малые параметры индуктивности и ёмкости, чтобы значение резонансной частоты было бы велико: . На практике реальные значения параметров элементов складываются из номинальных и паразитных (например, Смонтажа). В диапазоне УКВ номинальный параметр ёмкости может иметь величину, сопоставимую с паразитной ёмкостью монтажа. Кроме того, малое значение параметра индуктивности приводит к уменьшению добротности: , где. Колебательные цепи ламповых генераторов, работающих на частотах до 30…100 МГц, выполняются на сосредоточенных LC-элементах, а на более высоких частотах применяются объёмные резонаторы на базе коаксиальных линий. В транзисторных генераторах, работающих на частотах до 1…2 ГГц (в отдельных случаях – до 10…18 ГГц), колебательные цепи реализуют на сосредоточенных LC-элементах; начиная с частот 100…300 МГц, их выполняют частично или полностью на распределённых элементах, главным образом на отрезках несимметричных полосковых линий.

Четвертьволновая линия с малыми потерями, замкнутая на конце, обладает свойствами резонансной цепи, состоящей из параллельно соединённых элементов L, C. При частоте, при которой на линии укладывается четверть волны (такая частота называется резонансной), входное сопротивление линии будет максимальным.

При малом отклонении частоты от резонансной модуль входного сопротивления линии резко убывает; входное сопротивление приобретает емкостной характер при увеличении частоты и индуктивный характер – при уменьшении (рисунок 6).

Частотная зависимость может быть выражена следующей формулой

.

Добротность линии определяется как . При малых значениях коэффициента ослабления добротность получается высокой, достигая примерно 1000…4000, что намного превышает значение добротности контуров на элементах с сосредоточенными параметрами. В связи с этим возрастает и избирательность резонансной цепи с распределёнными параметрами.

Теоретические основы синтеза фильтров.

Электрические фильтры – это четырёхполюсники, которые с пренебрежимо малым ослаблением ∆A пропускают колебания в определённых диапазонах частот f0…f1 (полосах пропускания) и практически не пропускают колебания в других диапазонах f2…f3 (полосах задерживания, или непропускания).

Рис. 2.1.1. Фильтр нижних частот (ФНЧ). Рис. 2.1.2. Фильтр верхних частот (ФВЧ).

Существует множество различных типов реализации электрических фильтров: пассивныеLC-фильтры (схемы содержат индуктивные и емкостные элементы), пассивные RC-фильтры (схемы содержат резистивные и емкостные элементы), активные фильтры (схемы содержат операционные усилители, резистивные и емкостные элементы), волноводные, цифровые фильтры и другие. Среди всех типов фильтров особое положение занимают LC-фильтры, так как широко применяются в телекоммуникационном оборудовании в различных частотных диапазонах. Для фильтров этого типа существует хорошо разработанная методика синтеза, а синтез фильтров других типов во многом использует эту

методику. Поэтому в курсовой работе основное внимание уделяется синтезу

Рис. 2.1.3. Полосовой фильтр (ПФ). пассивных LC-фильтров.

Задачей синтеза электрического фильтра является определение схемы фильтра с минимально возможным числом элементов, частотная характеристика которой удовлетворяла бы заданным техническим требованиям. Часто требования предъявляются к характеристике рабочего ослабления . На рисунках 2.1.1, 2.1.2, 2.1.3 требования к рабочему ослаблению заданы уровнями максимально допустимого ослабления в полосe пропускания А и уровнями минимально допустимого ослабления в полосе непропусканияAs. Задача синтеза разбивается на два этапа: задачу аппроксимации требований к рабочему ослаблению физически реализуемой функцией и задачу реализации найденной аппроксимирующей функции электрической цепью.

Решение задачи аппроксимации заключается в нахождении такой функции минимально возможного порядка, которая, во-первых, удовлетворяет заданным техническим требованиям к частотной характеристике фильтра, и, во-вторых, удовлетворяет условиям физической реализуемости.

Решение задачи реализации заключается в определении электрической цепи, частотная характеристика которой совпадает с функцией, найденной в результате решения задачи аппроксимации.

2.1. ОСНОВЫ СИНТЕЗА ФИЛЬТРОВ ПО РАБОЧИМ ПАРАМЕТРАМ.

Рассмотрим некоторые соотношения, характеризующие условия передачи энергии через электрический фильтр. Как правило, электрический фильтр используется в условиях, когда со стороны его входных зажимов подключаются устройства, которые на эквивалентной схеме могут быть представлены в виде активного двухполюсника с параметрами E(jω), R1, а со стороны выходных зажимов подключаются устройства, представляемые на эквивалентной схеме резистивным сопротивлением R2. Схема включения электрического фильтра представлена на рисунке 2.2.1.

На рисунке 2.2.2 представлена схема, на которой вместо фильтра и сопротивления R2 к эквивалентному генератору (с параметрами E(jω), R1) подключается нагрузочное сопротивление, величина которого равна сопротивлению генератора R1. Как известно, генератор отдаёт максимальную мощность в резистивную нагрузку, если сопротивление нагрузки будет равно сопротивлению внутренних потерь генератора R1.

Прохождение сигнала через четырёхполюсник характеризуется рабочей передаточной функцией T(jω). Рабочая передаточная функция позволяет сравнить мощность S0(jω), отдаваемую генератором в нагрузку R1 (согласованную с его собственными параметрами), с мощностью S2(jω), поступающую в нагрузку R2 после прохождения через фильтр:

. (2.1)

Аргумент рабочей передаточной функции arg{T(jω)} характеризует фазовые соотношения между э.д.с. E(jω) и выходным напряжением U2(jω). Он называется рабочей фазовой постоянной передачи (обозначается греческой буквой «бета»):

·

При передаче энергии через четырёхполюсник изменения мощности, напряжения и тока по абсолютной величине характеризуются модулем рабочей передаточной функции . При оценке избирательных свойств электрических фильтров используется мера, определяемая логарифмической функцией. Эта мера – рабочее ослабление (обозначается греческой буквой «альфа»), которая связана с модулем рабочей передаточной функцией соотношениями:

, (Нп); или (2.2)

, (дБ). (2.3)

В случае использования формулы (2.2), рабочее ослабление выражается в неперах, а при использовании формулы (2.3) – в децибелах.

Величина называется рабочей постоянной передачи четырёхполюсника (обозначается греческой буквой «гамма»). Рабочая передаточная функция может быть представлена с использованием рабочего ослабления и рабочей фазы в виде:

.

В случае, когда сопротивление внутренних потерь генератора R1 и сопротивление нагрузки R2 являются резистивными, мощности S0(jω) и S2(jω) являются активными. Прохождение мощности через фильтр удобно характеризовать с помощью коэффициента передачи мощности, определяемого как отношение максимальной мощности Pmax, получаемой от генератора согласованной с ним нагрузкой, к мощности P2, поступающей в нагрузку R2:

. (2.4)

Реактивный четырёхполюсник не потребляет активной мощности. Тогда активная мощность P1, отдаваемая генератором, равна мощности P2, потребляемой нагрузкой:

. (2.5)

Значение модуля входного тока выразим: , и подставим в (2.5).

С помощью алгебраических преобразований представим (2.5) в виде:

. (2.6)

Представим числитель правой части уравнения в виде:

.

Левая часть уравнения (2.6) представляет собой величину, обратную коэффициенту передачи мощности:

.

Следующее выражение представляет собой коэффициент отражения мощности от входных зажимов четырёхполюсника:

. (2.7)

Коэффициент отражения (напряжения или тока) от входных зажимов четырёхполюсника, равный

, (2.8)

характеризует согласование входного сопротивления фильтра с сопротивлением R1.

Пассивный четырёхполюсник не может давать усиление по мощности, то есть .

Поэтому для таких цепей целесообразно пользоваться вспомогательной функцией , определяемой выражением:

. (2.9)

Представим рабочее ослабление в иной, более удобной для решения задачи синтеза фильтров, форме:

, дБ.

Очевидно, характер частотной зависимости рабочего ослабления связан с частотной зависимостью функции ,называемой функцией фильтрации: нули и полюсы функции фильтрации совпадают с нулями и полюсами ослабления.

На основании формул (2.7) и (2.9) можно представить коэффициент отражения мощности от входных зажимов четырёхполюсника:

(2.10)

Перейдём к записи операторных изображений по Лапласу, учитывая, что p = jω, а также что квадрат модуля комплексной величины выражается, например . Выражение (2.10) в операторной форме имеет вид

. (2.11)

Операторные выражения ,,являются рациональными функциями комплексной переменной «p», и поэтому их можно записать в виде

, , , (2.12)

где ,,- являются полиномами, например:

.

Из формулы (2.11), учитывая (2.12), можно получить соотношение между полиномами:

(2.13)

На этапе решения задачи аппроксимации определяется выражение функции фильтрации, то есть определяются полиномы h(p), w(p); из уравнения (2.13) можно найти полином v(p).

Если выражение (2.8) представить в операторной форме , то можно получить функцию входного сопротивления фильтра в операторной форме:

. (2.14)

Условия физической реализуемости заключаются в следующем:

1. v(p) – должен быть полиномом Гурвица, то есть его корни располагаются в левой половине плоскости комплексной переменной p=α+j·Ω (требование устойчивости цепи);

2. w(p) – должен быть или чётным, или нечётным полиномом (для ФНЧ w(p) – чётный, чтобы не было полюса ослабления при ω=0; для ФВЧ w(p) – нечётный);

3. h(p) – любой полином с вещественными коэффициентами.

2.2. НОРМИРОВАНИЕ ПО СОПРОТИВЛЕНИЮ И ЧАСТОТЕ.

Численные значения параметров элементов L, C, R и граничных частот реальных фильтров могут принимать, в зависимости от технических условий, самые различные значения. Использование в вычислениях одновременно малых и больших величин приводит к значительной погрешности вычислений.

Известно, что характер частотных зависимостей фильтра не зависит от абсолютных величин коэффициентов функций, описывающих эти зависимости, а определяется лишь их соотношениями. Значения коэффициентов определяются значениями параметров L, C, R фильтров. Поэтому нормирование (изменение в одинаковое число раз) коэффициентов функций ведёт к нормированию величин параметров элементов фильтра. Таким образом, вместо абсолютных значений сопротивлений элементов фильтра берут их относительные величины, отнесённые к сопротивлению нагрузки R2 (или R1).

Кроме того, если нормировать значения частот относительно граничной частоты полосы пропускания (чаще всего используется именно это значение), то это ещё более сузит разброс величин, используемых в вычислениях, и повысит точность вычислений. Нормированные значения частот записываются в виде и являются безразмерными величинами, а нормированное значение граничной частоты полосы пропускания.

Для примера рассмотрим сопротивление последовательно соединённых элементов L, C, R:

Нормированное сопротивление: .

Введём в последнее выражение нормированные значения частот:где нормированные параметры равны: .

Истинные (денормированные) значения параметров элементов определяются:

. (2.15)

Изменяя значения f1 и R2, можно из исходной схемы получать новые схемы устройств, работающих в других диапазонах частот и при других нагрузках. Введение нормирования позволило создать каталоги фильтров, что во многих случаях сводит сложную проблему синтеза фильтра к работе с таблицами.