Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Desktop / 0.1 Адаптивный курс-ч.1 / Адаптивный курс-ч.1.doc
Скачиваний:
80
Добавлен:
19.05.2015
Размер:
13.9 Mб
Скачать

Пружинный маятник

Пружинный маятник представляет собой материальную точку массой , прикрепленную к абсолютно упругой невесомой пружине с жесткостью . Различают два наиболее простых случая: горизонтальный (рис.15,а) и вертикальный (рис.15, б) маятники.

а) Горизонтальный маятник (рис. 15,а). При смещении груза из положения равновесия на величину на него действует в горизонтальном направлениивозвращающая упругая сила (закон Гука).

Предполагается, что горизонтальная опора, по которой скользит груз при своих колебаниях, абсолютно гладкая (трения нет).

б) Вертикальный маятник (рис.15, б). Положение равновесия в этом случае характеризуется условием:

где - величина упругой силы, действующей на груз при статическом растяжении пружины на под действием силы тяжести груза.

а

Рис.15. Пружинный маятник: а – горизонтальный и б – вертикальный

Если растянуть пружину и отпустить груз, то он начнет совершать вертикальные колебания. Если смещение в какой-то момент времени будет , то сила упругости запишется теперь как .

В обоих рассмотренных случаях пружинный маятник совершает гармонические колебания с периодом

(27)

и циклической частотой

. (28)

На примере рассмотрения пружинного маятника можно сделать вывод о том, что гармонические колебания – это движение, вызванное силой, возрастающей пропорционально смещению . Таким образом, если возвращающая сила по виду напоминает закон Гука (она получила название квазиупругой силы), то система должна совершать гармонические колебания. В момент прохождения положения равновесия на тело не действует возвращающая сила, однако, тело по инерции проскакивает положение равновесия и возвращающая сила меняет направление на противоположное.

Математический маятник

Рис.16. Математический маятник

Математический маятник представляет собой идеализированную систему в виде материальной точки, подвешенной на невесомой нерастяжимой нити длиной , которая совершает малые колебания под действием силы тяжести (рис. 16).

Колебания такого маятника при малых углах отклонения (не превышающих 5º) можно считать гармоническими, и циклическая частота математического маятника:

, (29)

а период:

. (30)

2.3. Энергия тела при гармонических колебаниях

Энергия, сообщенная колебательной системе при начальном толчке, будет периодически преобразовываться: потенциальная энергия деформированной пружины будет переходить в кинетическую энергию движущегося груза и обратно.

Пусть пружинный маятник совершает гармонические колебания с начальной фазой , т.е.(рис.17).

Рис.17. Закон сохранения механической энергии

при колебаниях пружинного маятника

При максимальном отклонении груза от положения равновесия полная механическая энергия маятника (энергия деформированной пружины с жесткостью ) равна . При прохождении положения равновесия () потенциальная энергия пружины станет равной нулю, и полная механическая энергия колебательной системы определится как .

На рис.18 представлены графики зависимостей кинетической, потенциальной и полной энергии в случаях, когда гармонические колебания описываются тригонометрическими функциями синуса (пунктирная линия) или косинуса (сплошная линия).

Рис.18. Графики временной зависимости кинетической

и потенциальной энергии при гармонических колебаниях

Из графиков (рис.18) следует, что частота изменения кинетической и потенциальной энергии в два раза выше собственной частоты гармонических колебаний.

Соседние файлы в папке 0.1 Адаптивный курс-ч.1