Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
176
Добавлен:
15.08.2013
Размер:
909.2 Кб
Скачать

PHYSICAL

PROPERTIES

 

5.169

TABLE 5.30 Triple Points of Various Materials (

Continued

)

 

 

 

 

Substance

Triple point, K

Pressure, mmHg

 

 

 

 

Phosphorus, white

863

 

32 760

Plutonium hexafluoride

324.74

 

533.0

Propene

103.95

500

Radon

202

 

Rhenium dioxide trifluoride

363

 

 

Rhenium heptafluoride

321.4

 

 

Rhenium oxide pentafluoride

313.9

 

 

Rhenium pentafluoride

321

 

 

Succinonitrile (NIST standard)

331.23

 

 

Sulfur dioxide

197.68

 

1.256

Tantalum pentabromide

553

 

 

Tantalum pentachloride

489.0

 

 

Tungsten oxide tetrafluoride

377.8

 

 

Uranium hexafluoride

337.20

 

1 139.6

Water

273.16

 

Xenon

161.37

612

 

 

 

 

5.9.1Some Physical Chemistry Equations for Gases

A number of physical chemistry relationships, not enumerated in other sections (

see

Index), will be

discussed in this section.

 

 

 

 

 

 

 

Boyle’s law

states that the volume of a given quantity of a gas varies inversely as the pressure,

 

the temperature remaining constant. That is,

 

 

 

 

 

 

 

 

V

 

constant

 

or

PV

constant

 

 

P

 

 

 

 

 

 

 

 

A convenient form of the law, true strictly for ideal gases, is

 

 

 

 

 

 

 

 

P V1

1 P

V2 2

 

 

Charles’ law,

also known as

Gay-Lussac’s law,

 

states

that the volume of a given mass

of gas

varies directly as the absolute temperature if the pressure remains constant, that is,

V constant

T

Combining the laws of Boyle and Charles into one expression gives

 

 

 

 

P V1

1

P V 2

2

 

 

 

 

 

 

 

 

 

 

 

T

1

T

2

In

terms of moles,

Avogadro’s

hypothesis

can be stated: The same volume is occupied by one

mole of any gas at a given temperature and pressure. The number of molecules in one mole is known

as the

Avogadro number constant

N

A .

 

 

 

The behavior of all gases that obey the laws of Boyle and Charles, and Avogadro’s hypothesis,

can be expressed by the ideal gas equation:

 

 

 

 

 

 

 

PV

 

nRT

 

5.170

 

 

 

 

 

 

 

 

 

SECTION

5

 

 

 

 

 

 

 

 

 

 

 

 

 

where

R is called the

gas

constant

and

n

 

is the

number

of

 

moles of

gas. If pressure is written as

 

 

force per unit area and the volume as area times length, then

 

 

 

 

 

 

 

 

 

 

 

R

has the dimensions of energy per

 

 

degree per mole— 8.314 J · K

1 · mol 1 or 1.987 cal · K 1 · mol 1.

 

 

Dalton’s law of partial pressures

 

states

 

that

the total

pressure exerted

by a mixture of gases is

 

 

equal to the sum of the pressures which each component would exert if placed separately into the

 

 

container:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P total

p1

p2

 

p3

· · ·

 

 

 

 

There are two ways to express the fraction which one gaseous component contributes to the total

 

 

mixture: (1) the pressure fraction,

pand/i P(2)totalthe, mole fraction,

 

 

 

 

 

 

 

 

n i /n total .

 

 

5.9.1.1

Equations

of State

 

(PVT

Relations

 

for Real Gases

 

 

 

 

 

)

 

 

 

 

 

 

 

1.

Virial equation

represents the experimental compressibility of a gas by an empirical equation

 

 

of state:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PV

A p B pP

 

C p P

2 · · ·

 

 

or

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PV

A v B vV

 

 

 

C v

· · ·

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

2

 

 

 

 

 

 

 

 

where

A , B , C

, . . .

are called the virial coefficients and are a function of the nature of the gas and

 

 

the temperature.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

Van der Waals’ equation:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

an 2

(V

nb

 

)

nRT

 

 

 

 

 

 

 

 

 

V 2

 

 

 

 

 

where the term

an 2 /V

2 is

the correction for intermolecular attraction among the gas molecules and

 

 

the nb

term is the correction for the volume occupied by the gas molecules. The constants

a

and b

must be fitted for each gas from experimental data (Table 5.28); consequently the equation is

 

 

semiempirical. The constants are related to the critical-point constants (Table 6.5) as follows:

 

 

 

 

 

 

 

 

 

 

 

 

a

3P

 

Vc

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

V

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

8P Vc

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3T c

 

 

 

 

 

 

 

 

 

 

 

Substitution into van der Waals’ equation and rearrangement leads to only the terms

 

 

 

 

 

P /P c , V

/V

c , and

T /T c , which are called the reduced variables

 

 

 

and P R , ForV R

 

,1 moleTRof .gas,

 

 

 

 

 

 

 

 

 

 

 

 

V R2

 

 

 

 

3

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

1

 

8

 

 

 

 

 

3.

 

 

 

 

P R

 

 

 

 

 

 

V

R

 

 

 

 

 

 

T

R

 

 

Berthelot’s equation of

state,

used by many thermodynamicists, is

2

 

 

 

 

 

 

 

 

 

 

128

 

P Tc

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

PT

c

 

 

 

 

T

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c

 

 

 

 

 

 

PV

nRT

 

 

 

1

 

 

 

 

 

 

 

 

 

1

6

 

 

 

 

 

PHYSICAL PROPERTIES

5.171

This equation requires only knowledge of the critical temperature and pressure for its use and gives accurate results in the vicinity of room temperature for unassociated substances at moderate pressures.

5.9.1.2 Properties of Gas Molecules

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vapor Density.

Substitution of the Antoine vapor-pressure equation for its equivalent log

 

 

P in

the ideal gas equation gives

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

log vap log M

log

R

log ( t 273.15) A

 

B

 

 

 

 

 

 

 

 

 

 

t

C

 

 

where

vap is the vapor density in g · mL

1 at

t C,

M

is the molecular weight,

R

 

is the gas constant,

and A

, B , and

C are the constants of the Antoine equation for vapor pressure. Since this equation is

 

 

 

based on the ideal gas law, it is accurate only at temperatures at which the vapor of any specific

 

 

 

compound follows this law. This condition prevails at reduced temperatures (

T

R ) of about 0.5 K.

Velocities of

Molecules.

The mean square velocity of gas molecules is given by

 

 

 

 

 

 

 

 

 

 

 

3kT

 

 

 

3RT

 

 

 

 

 

 

 

 

 

u 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

 

 

 

M

 

 

 

where

k is Boltzmann’s constant and

 

m is the mass of the molecule.

 

 

 

The mean velocity is given by

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

8u 2

1/2

 

 

 

 

 

 

 

 

 

 

 

u

 

 

 

 

 

 

 

 

 

 

 

 

Viscosity. On the assumption that molecules interact like hard spheres, the viscosity of a gas is

165 2 mkT 1/2

where is the molecular diameter.

 

 

 

 

 

 

 

 

 

Mean Free Path.

The mean free path of a gas molecule

 

 

 

 

 

l and the mean time between collisions

are given by

 

 

 

 

 

 

 

 

 

 

 

l

 

 

 

m

 

2 p

 

 

 

 

 

 

2

 

 

 

1

 

4

 

 

 

 

 

5P

 

 

 

u

 

 

Graham’s Law of Diffusion. The rates at which gases diffuse under the same conditions of temperature and pressure are inversely proportional to the square roots of their densities:

 

 

r 1

 

2

1/2

 

 

 

 

 

 

 

 

r 2

1

Since MP /RTfor an ideal gas, it follows that

M

 

 

 

 

r 2

1

 

r 1

M

2

1/2

 

 

 

 

 

 

5.172

SECTION

5

 

 

Henry’s Law.

The solubility of a gas is directly proportional to the partial pressure exerted by

the gas:

 

 

 

 

 

p i kx i

Joule-Thompson

Coefficient for Real Gases.

 

This expresses the change in temperature with

respect to change in pressure at constant enthalpy:

 

 

 

 

 

T

H

 

P

Соседние файлы в папке Lange's Handbook of Chemistry (15th Edition)