Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Fitts D.D. - Principles of Quantum Mechanics[c] As Applied to Chemistry and Chemical Physics (1999)(en)

.pdf
Скачиваний:
45
Добавлен:
15.08.2013
Размер:
1.57 Mб
Скачать

242

 

 

 

Approximation methods

 

applying the hermitian property of

^ (0)

to the ®rst term on the left-hand side,

H

(1)

(0)

^

(1)

(0)

 

 

 

 

and writing H kn for høk

jH

 

n

i, we may express equation (9.25) as

 

 

 

(0)

 

(0)

 

(0)

(1)

^ (1)

(9:27)

 

(Ek

ÿ En

)høk n

i ÿH kn

The orthonormal

eigenfunctions

ø(0)

for

the unperturbed system

are as-

 

 

 

 

 

 

j

 

 

 

sumed to form a complete set. Thus, the perturbation corrections ø(1)n may be

expanded in terms of the set ø(0)j

 

X

ø(1)n

X

 

anjø(0)j annø(0)j

anjø(0)j

 

j

 

j(6n)

 

 

 

where anj are complex constants given by

 

 

 

anj (0)j (1)n

i

(9:28)

If the complete set of eigenfunctions for the unperturbed system includes a continuous range of functions, then the expansion of ø(1)n must include these functions. The inclusion of this continuous range is implied in the summation notation. The total eigenfunction øn for the perturbed system to ®rst order in ë is, then

øn (1 ëann(0)n ë anjø(0)j

(9:29)

j(6n)

 

X

 

Since the function ø(0)n is already included in zero order in the expansion of øn, we may, without loss of generality, set ann equal to zero, so that

X

ø(1)n anjø(0)j (9:30) j(6n)

This choice affects the normalization constant of øn, but has no other consequence. Furthermore, equation (9.28) for j n becomes

showing that with a

nn 0,

(0)n (1)n i 0

(1)

(9:31)

the ®rst-order correction

is orthogonal to the

 

(0)

øn

 

unperturbed eigenfunction øn .

 

 

With the choice ann 0, the total eigenfunction øn to ®rst order is normalized. To show this, we form the scalar product hønni using equation (9.29) and retain only zero-order and ®rst-order terms to obtain

X

nni hø(0)n (0)n i ë (anj(0)n (0)j i anj(0)j (0)n i)

j(6n)

X

1 ë (anj anjnj 1 j(6n)

where equation (9.26) has been used. Substitution of equation (9.30) into (9.27) gives

ank
(9:32)

9.3 Non-degenerate perturbation theory

243

X

( (0) ÿ (0)) hø(0)(0)i ( (0) ÿ (0)) ÿ ^ (1)

Ek En anj k j Ek En ank H kn j(6n)

where again equation (9.26) is utilized. If the eigenvalue E(0)n is non-degen- erate, then E(0)k cannot equal E(0)n for all k and n and we can divide by (E(0)k ÿ E(0)n ) to solve for ank

ÿ ^ (1)

H kn

E(0)k ÿ E(0)n

The situation where E(0) is degenerate requires a more complex treatment,

n

 

 

 

 

 

 

which is presented in Section 9.5. The ®rst-order correction ø(1)

is obtained by

 

 

 

 

 

n

 

combining equations (9.30) and (9.32)

 

 

 

 

 

 

 

^ (1)

 

 

 

(1)

H kn

 

(0)

 

øn ÿ

 

 

 

øk

(9:33)

E(0)

ÿ

E(0)

k(6n)

k

 

n

 

 

X

 

 

 

 

 

Second-order corrections

The second-order correction E(2)n to the eigenvalue En is obtained by multi-

plying equation (9.23) by ø(0)n

and integrating over all space

 

 

 

 

 

 

(0)

^ (0)

 

 

(0)

(2)

(0)

^ (1)

 

(1)

 

 

(1)

(0)

(1)

i

 

 

 

 

 

 

n

jH

 

ÿ En

 

n i høn

 

jH

 

 

n i ÿ

En

n n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(0)

^

(2)

 

(0)

(2)

where the normalization of ø(0)

 

 

 

 

 

 

 

 

 

ÿhøn

jH

 

 

n i En

has been noted. Application of the hermitian

 

 

 

 

 

^ (0)

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

property of

 

cancels the ®rst term on the left-hand side. The third term on

H

 

 

the left-hand side vanishes according to

equation

 

 

 

 

 

 

 

^ (2)

for

(9.31). Writing H nn

(0)

^

(2)

 

(0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n jH

 

n i and substituting equation (9.33) then give

 

 

 

 

 

 

 

 

 

 

 

 

(2)

 

^ (2)

(0)

 

^

(1)

 

 

(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

En

H nn

n

 

jH

 

 

n i

 

 

 

X

 

 

ÿ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

ÿ

(1)

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

^ (1)

^

 

 

 

 

 

 

 

^ (1)

 

 

 

 

 

 

 

 

 

 

 

 

 

H^ (2)

 

 

 

H nk

H kn

 

 

H^ (2)

 

 

 

jH kn j

 

 

(9:34)

 

 

 

 

 

 

 

nn

ÿ

 

 

E(0)

 

 

 

E(0)

nn

ÿ

 

E(0)

 

E(0)

 

 

 

 

 

 

 

 

 

 

 

 

k(6n)

 

k

 

 

 

n

^ (1)

 

k(6n)

 

k

 

 

n

 

 

where we have also noted that

^ (1)

equals

because

^ (1)

is hermitian.

 

H nk

H kn

H

 

In

many

applications there

is

 

 

no second-order

term in

the

perturbed

Hamiltonian

operator

so that

 

^

(2)

is zero. In such cases each unperturbed

 

H nn

 

eigenvalue

E(0)n

 

is raised by the terms in the summation corresponding to

eigenvalues E(0) less than E(0)

 

and lowered by the terms with eigenvalues E(0)

 

 

 

 

 

k

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

greater than E(0). The eigenvalue E(0)

is perturbed to the greatest extent by the

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

terms with eigenvalues E(0) close to E(0). The contribution to the second-order

 

 

 

 

 

 

 

 

 

 

k

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

correction E(2)

 

of terms with eigenvalues far removed from E(0) is small. For

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

the lowest eigenvalue E(0)0 , all of the terms are negative so that E(2)0 is negative.

244 Approximation methods

We also see that, in these cases, the ®rst-order correction ø(1)n to the eigenfunction determines the second-order correction E(2)n to the eigenvalue.

To obtain the second-order perturbation correction ø(2) to the eigenfunction,

ø(0) 6 n

we multiply equation (9.23) by kn for k n and integrate over all space

(0)

^ (0)

(0)

(2)

i

k

jH

ÿ En

n

(0)

^ (1)

(1)

i ÿ

(1)

(0)

(1)

i

 

 

 

k

jH

n

En k

n

 

 

 

 

 

 

 

(0)

^

(2)

 

(0)

(2)

(0)

(0)

i

 

 

ÿhøk

jH

 

n i En

k

n

As before, we apply the hermitian property of ^ (0), introduce the abbreviation

H

^ (2)

H kn , and use the orthogonality relation (9.26) to obtain

(0)

(0)

(0)

(2)

(0)

^ (1)

(1)

(1)

(0)

(1)

^ (2)

(9:35)

(Ek

ÿ En

)høk

n

i høk

jH

n

i ÿ En

k

n

i ÿH kn

We next expand the function ø(2)n in terms of the complete set of unperturbed

eigenfunctions ø(0)

 

 

j

 

 

ø(2)n

bnjø(0)j

(9:36)

 

j(6n)

 

 

X

 

where, without loss of generality, the term j n may be omitted for the same reason that ø(0)n is omitted in equation (9.30). The coef®cients bnj are complex constants given by

 

 

 

 

 

 

 

 

 

 

bnj (0)j (2)n i

 

 

 

 

 

 

 

 

 

(9:37)

Substitution of equations (9.24), (9.28), (9.30), and (9.37) into (9.35) gives

 

 

 

(0)

 

 

(0)

 

 

 

X

 

^

(1)

 

 

^ (1)

 

 

^ (2)

 

 

 

 

 

 

 

 

 

(Ek

 

ÿ En )bnk

 

anj H kj

 

ÿ ank H nn ÿH kn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j(6n)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

^ (2)

 

 

 

 

^ (1)

 

^ (1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H kn

 

anj H kj ÿ ank H nn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j(6n)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

(9:38)

 

 

 

 

 

 

ÿ

 

 

(E(0)k ÿ E(0)n )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nk

 

 

 

 

 

 

 

 

 

 

 

 

 

Combining equations (9.32), (9.36), and (9.38), we obtain the ®nal result

 

 

 

X 4

ÿ

(2)

 

 

X

 

 

ÿ

^ (1) ^ (1)

ÿ

 

 

 

^

(1)

 

^

(1)

5

 

 

 

 

 

 

 

H

 

 

H

 

 

 

 

 

ÿ

 

 

(2)

 

 

 

^

 

 

 

 

 

 

 

 

kj

 

jn

 

 

 

 

 

 

 

 

 

(0)

 

 

 

H kn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H kn

H nn

 

øn

 

2

ÿ

 

 

 

 

 

 

 

 

 

 

 

ÿ

 

 

 

 

3øk

E(0)

 

 

E(0)

j(6n)

(E(0)

 

E(0))(E(0)

 

E(0))

(E(0)

 

 

E(0))2

 

k(6n)

 

k

 

 

n

 

 

 

k

 

n

 

 

j

 

n

k

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(9:39)

Summary

The non-degenerate eigenvalue En for the perturbed system to second order is obtained by substituting equations (9.24) and (9.34) into (9.20) to give

9.3 Non-degenerate perturbation theory

245

 

4

X

 

ÿ

 

5

 

 

2H^ (2)nn ÿ

 

 

^

(1) 2

 

3

 

 

 

 

H

 

 

 

En E(0)n ëH^ (1)nn ë2

 

j

kn j

 

(9:40)

k(6n)

E(0)

E

(0)

 

 

k

 

 

n

 

 

The corresponding eigenfunction øn to second order is obtained by combining equations (9.19), (9.33), and (9.39)

 

 

 

X

 

 

ÿ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

^

(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(0)

 

 

 

 

 

H

kn

 

 

(0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

øn øn

ÿ ë

k(6n)

E(0)

 

 

E(0)

øk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X 4

 

ÿ

(2)

 

 

 

 

X

 

ÿ

^ (1) ^ (1)

ÿ

 

 

^

(1)

 

^

(1)

5

 

 

 

 

 

 

 

 

H

 

H

 

 

 

 

ÿ

 

 

 

 

 

 

^

 

 

 

 

 

 

 

 

 

kj

jn

 

 

 

 

 

 

 

 

(0)

2

 

 

 

H

kn

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

kn

H

nn

 

ë

2

ÿ

 

 

 

 

 

 

 

 

 

 

 

ÿ

 

 

 

 

3øk

E(0)

 

E(0)

 

j(6n)

(E(0)

 

E(0))(E(0)

 

E(0))

(E(0)

 

 

E(0))2

k(6n)

k

 

n

 

 

 

k

 

n

 

j

 

n

k

 

 

 

 

n

 

 

(9:41)

While the eigenvalue E(0)n for the unperturbed system must be non-degen- erate for these expansions to be valid, some or all of the other eigenvalues E(0)k for k 6 n may be degenerate. The summations in equations (9.40) and (9.41) are to be taken over all states of the unperturbed system other than the state ø(0)n . If an eigenvalue E(0)i is gi-fold degenerate, then it is included gi times in the summations. If the unperturbed eigenfunctions have a continuous range, then the summations in equations (9.40) and (9.41) must include an integration over those states as well.

Relation to variation method

If we use the wave function ø(0) for the unperturbed ground state as a trial

function ö in the variation

0

 

 

 

 

^

 

method

of Section

 

equal to

9.1 and set H

^ (0)

^ (1)

, then we have from equations (9.2), (9.18), and (9.24)

 

H

ëH

 

 

E

^

(0)

^ (0)

^ (1)

(0)

(0)

(1)

 

 

höjHjöi hø0

jH

ëH

0

i E0

ëE0

 

and E is equal to the ®rst-order energy as determined by perturbation theory. If we instead use a trial function ö which contains some parameters and which equals ø(0)0 for some set of parameter values, then the corresponding energy E from equation (9.2) is at least as good an approximation as E(0)0 ëE(1)0 to the true ground-state energy.

Moreover, if the wave function ø(0)0 ëø(1)0 is used as a trial function ö, then the quantity E from equation (9.2) is equal to the second-order energy determined by perturbation theory. Any trial function ö with parameters which reduces to ø(0)0 ëø(1)0 for some set of parameter values yields an approximate energy E from equation (9.2) which is no less accurate than the second-order perturbation value.

246

Approximation methods

9.4 Perturbed harmonic oscillator

As illustrations of the application of perturbation theory we consider two examples of a perturbed harmonic oscillator. In the ®rst example, we suppose that the potential energy V of the oscillator is

V 12kx2 cx4 122 x2 cx4

where c is a small quantity. The units of V are those of "ù (energy), while the units of x are shown in equation (4.14) to be those of ("=mù)1=2. Accordingly, the units of c are those of m2ù3=" and we may express c as

c ë m2ù3

"

where ë is dimensionless. The potential energy then takes the form

 

 

 

V 212 x2

ë

m2ù3 x4

 

 

 

 

 

 

 

(9:42)

 

 

 

 

"

 

 

The Hamiltonian operator

^

(0)

for the unperturbed harmonic oscillator is

H

 

given by equation (4.12) and its eigenvalues E(0)

and eigenfunctions ø(0) are

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

^

shown in equations (4.30) and (4.41). The perturbation H9 is

 

 

 

^

 

 

 

^

(1)

ë

m2

ù3 x4

 

 

 

 

H9 H

 

 

 

"

(9:43)

^

(2)

,

^ (3)

,

. . . in the perturbed Hamiltonian operator do

Higher-order terms H

 

H

 

not appear in this example.

To ®nd the perturbation corrections to the eigenvalues and eigenfunctions, we require the matrix elements hn9jx4jni for the unperturbed harmonic oscillator. These matrix elements are given by equations (4.51). The ®rst-order correction E(1)n to the eigenvalue En is evaluated using equations (9.24), (9.43),

and (4.51c)

 

 

 

 

 

 

 

 

 

 

 

 

 

(1)

^ (1)

 

ëm2

ù3

 

4

 

3

2

 

1

 

En

H nn

 

 

 

 

hnjx

 

jni

2(n

n

2)ë"ù

(9:44)

"

 

 

The second-order correction E(2)

is obtained from equations (9.34), (9.43), and

 

 

 

 

n

 

 

 

 

 

 

 

 

 

(4.51) as follows

 

 

 

 

 

 

 

9.4 Perturbed harmonic oscillator

 

 

 

 

 

 

247

E(2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

^ (1)

 

 

2

 

^ (1)

 

 

2

 

 

 

 

^ (1)

 

2

 

 

 

 

^ (1)

2

 

 

 

 

 

 

 

 

ÿ

jH nÿ4,nj

 

 

ÿ

jH nÿ2,nj

 

 

 

ÿ

 

jH n 2,nj

 

ÿ

 

jH n 4,nj

 

 

 

 

 

 

 

 

 

E(0)nÿ4 ÿ E(0)n

 

E(0)nÿ2 ÿ E(0)n

 

E(0)n 2 ÿ E(0)n

E(0)n 4 ÿ E(0)n

h

 

4"jù j

i

#

ÿ ë "2ù

 

"hn

(ÿ 4jj) i

 

h

(ÿ

2jj)

i

h

 

 

2"jù j i

 

 

2 m4

6

 

 

 

4 x4 n

2

 

 

 

 

n

2 x4 n

2

 

 

 

n

2 x4 n

2

 

 

 

n

4 x4

n

2

 

 

 

 

 

 

 

ÿ

 

 

 

 

 

ÿ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ÿ81(34n3 51n2 59n 21)ë2

 

 

 

 

 

 

 

 

 

 

 

 

(9:45)

The perturbed energy En to second order is, then

 

 

 

 

 

 

 

 

 

 

 

 

En E(0)n

E(1)n E(2)n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(n 12)"ù 32(n2 n 12)ë"ù ÿ 18(34n3 51n2 59n 21)ë2"ù (9:46)

In the expression (9.45) for the second-order correction E(2)n , the summation on the right-hand side includes all states k other than the state n, but only for

the states (n ÿ 4), (n ÿ 2), (n 2), and (n 4) are the contributions to the summation non-vanishing. For the two lowest values of n, giving E(2)0 and E(2)1 ,

only the two terms k (n 2) and k (n 4) should be included in the summation. However, the terms for the meaningless values k (n ÿ 2) and

k (n ÿ 4) vanish identically, so that their inclusion in equation (9.45) is valid. A similar argument applies to E(2)2 and E(2)3 , wherein the term for the

meaningless value k (n ÿ 4) is identically zero. Thus, equation (9.46) applies to all values of n and the perturbed ground-state energy E0, for example, is

E0 (12 34ë ÿ 218 ë2)"ù

The evaluation of the ®rstand second-order corrections to the eigenfunctions is straightforward, but tedious. Consequently, we evaluate here only the

®rst-order correction ø(1) for the ground state. According to equations (9.33),

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(9.43), and (4.51), this correction term is given by

 

 

 

 

 

 

 

 

 

^ (1)

 

 

 

 

 

 

 

 

 

 

 

^ (1)

 

 

 

 

(1)

 

 

H

20

 

 

 

 

(0)

 

 

 

 

 

H40

(0)

 

ø0

 

ÿ

 

 

 

ø2

 

ÿ

 

 

 

ø4

 

 

E2(0) ÿ E0(0)

 

E4(0) ÿ E0(0)

 

 

 

ÿ

"

 

h

2jj

i ø2(0) h

4jj i ø4(0)

 

 

 

ëm2ù3

 

2 x4

0

 

 

 

 

 

 

 

4 x4

0

 

 

 

 

ÿ

4 2

 

 

(0)

 

 

•••

(0)

 

 

 

 

 

 

 

 

 

 

ë

 

 

 

(0)

 

 

p

(0)

 

 

 

 

 

 

 

 

 

 

 

p

[6ø2

 

 

4

]

 

 

 

 

 

(9:47)

 

eigenfunctions

ø2

 

and

ø4

 

as given by equation (4.41) are

If the unperturbed

 

 

 

•••

 

 

 

 

 

 

 

 

 

 

 

 

 

 

248 Approximation methods

explicitly introduced, then the perturbed ground-state eigenfunction ø0 to ®rst order is

 

 

1=4

 

ë

 

 

2

 

ø0 ø0(0) ø0(1)

 

 

 

1 ÿ

 

(4î4

12î2

ÿ 9) eÿî

=2 (9:48)

ð"

16

As a second example, we suppose that the potential energy V for the perturbed harmonic oscillator is

V 21kx2 cx3 212 x2 ë

m3ù5

 

1=2

 

 

x3

(9:49)

"

where c ë(m3ù5=")1=2 is again a small quantity and ë is dimensionless. The

^

 

 

 

 

 

 

 

 

 

 

perturbation H9 for this example is

 

 

 

 

 

 

 

H^ 9 H^ (1) ë

m3ù5

1=2 x3

 

 

(9:50)

"

 

 

9

3

jni for the unperturbed

harmonic oscillator are

The matrix elements hn jx

 

 

(1)

 

given by equations (4.50). The ®rst-order correction term

En

is obtained by

substituting equations (9.50) and (4.50e) into (9.24), giving the result

E(1)n ë

m3ù5

 

1=2

 

 

 

 

 

 

hnjx3jni 0

 

(9:51)

"

 

 

Thus, the ®rst-order perturbation to the eigenvalue is zero. The second-order

term E(2) is evaluated using equations (9.34), (9.50), and (4.50), giving the

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

result

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

En E(2)n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

^ (1)

 

 

2

 

^ (1)

2

 

 

 

 

 

^ (1)

2

 

 

 

 

^ (1)

 

 

2

 

 

 

 

 

 

 

ÿ

 

jH nÿ3,nj

 

 

ÿ

jH nÿ1,nj

ÿ

jH n 1,nj

ÿ

 

jH n 3,nj

 

 

 

 

 

 

 

 

E(0)nÿ3 ÿ E(0)n

 

E(0)nÿ1 ÿ E(0)n

 

E(0)n 1 ÿ E(0)n

E(0)n 3 ÿ E(0)n

h

 

3"jù j i

#

ÿ ë

" ù

 

"hn

(ÿ 3jj) i

 

h

 

ÿ( "jù)j i

 

h

 

 

j

j

i

 

 

 

2 m3

5

 

 

 

 

3 x3 n

2

 

 

 

n

 

1 x3 n

2

 

 

 

n

1 x3

 

n

2

 

 

 

n

3 x3 n

2

 

 

 

 

 

 

 

 

ÿ

 

 

 

 

 

 

ÿ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ÿ81(30n2 30n 11)ë2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(9:52)

9.5 Degenerate perturbation theory

The perturbation method presented in Section 9.3 applies only to non-degen- erate eigenvalues E(0)n of the unperturbed system. When E(0)n is degenerate, the denominators vanish for those terms in equations (9.40) and (9.41) in which E(0)k is equal to E(0)n , making the perturbations to En and øn indeterminate. In

9.5 Degenerate perturbation theory

249

this section we modify the perturbation method to allow for degenerate eigenvalues. In view of the complexity of this new procedure, we consider only the ®rst-order perturbation corrections to the eigenvalues and eigenfunctions.

The eigenvalues and eigenfunctions for the unperturbed system are given by equation (9.18), but now the eigenvalue E(0)n is gn-fold degenerate. Accordingly, there are gn eigenfunctions with the same eigenvalue E(0)n . For greater clarity, we change the notation here and denote the eigenfunctions corresponding to E(0)n as ø(0), á 1, 2, . . . , gn. Equation (9.18) is then replaced by the equivalent expression

H(0)ø(0)E(0)n ø(0), á 1, 2, . . . , gn (9:53)

Each of the eigenfunctions ø(0)is orthogonal to all the other unperturbed

(0)

for

k n, but is not necessarily orthogonal to the other

eigenfunctions ø

(0)

 

6

 

 

 

eigenfunctions for En . Any linear combination öof the members of the set

ø(0)

 

 

 

 

 

 

 

 

X

 

 

 

ö

gn

á 1, 2, . . . ,

 

 

cáâø(0),

gn

(9:54)

 

 

 

â 1

 

 

 

is also a solution

of

equation (9.53)

with the same

eigenvalue

E(0). As

 

 

 

 

 

 

n

discussed in Section 3.3, the members of the set ø(0)may be constructed to be orthonormal and we assume that this construction has been carried out, so that

(0)(0)i äáâ, á, â 1, 2, . . . , gn (9:55)

By suitable choices for the coef®cients cáâ in equation (9.54), the functions ömay also be constructed as an orthonormal set

i äáâ,

á, â 1, 2, . . . , gn

(9:56)

Substitution of equation (9.54) into (9.56) and application of (9.55) give

X

 

 

 

 

 

 

 

gn

 

 

 

 

 

 

 

ã 1

câãcáã

 

äáâ,

á, â

 

1, 2, . . . , gn

(9:57)

 

 

 

 

 

 

 

The SchroÈdinger equation for the perturbed system is

 

^

øná Enáøná,

á 1, 2, . . . , gn

(9:58)

H

 

 

 

^

is given by equation (9.16),

Eare the

where the Hamiltonian operator H

eigenvalues for the perturbed system, and øare the corresponding eigen-

functions. While the unperturbed eigenvalue E(0)n is gn-fold degenerate, the

perturbation

^

(0)

H9 in the Hamiltonian operator often splits the eigenvalue

En

into gn different values. For this reason, the perturbed eigenvalues Erequire the additional index á. The perturbation expansions of Eand øin powers of ë are

(0) ná

250

Approximation methods

 

EE(0)n

ëE(1)ë2 E(2),

á 1, 2, . . . , gn

(9:59)

øø(0)ëø(1)ë2ø(2),

á 1, 2, . . . , gn

(9:60)

Note that in equation (9.59) the zero-order term is the same for all values of á.

 

limit

ë !

0, the Hamiltonian operator

^

In the

H approaches the unperturbed

^ (0)

 

 

operator

H

and the perturbed eigenvalue Eapproaches the degenerate

unperturbed eigenvalue E(0)n . The perturbed eigenfunction øapproaches a function which satis®es equation (9.53), but this limiting eigenfunction may not be any one of the initial functions ø(0). In general, this limiting function is some linear combination of the initial unperturbed eigenfunctions ø(0), as expressed in equation (9.54). Thus, along with the determination of the ®rstorder correction terms E(1)and ø(1), we must ®nd the set of unperturbed eigenfunctions ö(0)to which the perturbed eigenfunctions reduce in the limit ë ! 0. In other words, we need to evaluate the coef®cients cáâ in the linear combinations (9.54) which transform the initial set of unperturbed eigenfunctions ø(0)into the `correct' set ö . Equation (9.60) is then replaced by

øö(0)ëø(1)ë2ø(2), á 1, 2, . . . , gn (9:61) The ®rst-order equations (9.22) and (9.24) apply here provided the additional

index á and the `correct' unperturbed eigenfunctions are used

^ (0)

(0)

(1)

^

(1)

(1) (0)

(9:62)

(H

ÿ En

ÿ( H

 

ÿ E

 

(1)

(0)

^ (1)

 

(0)

(9:63)

 

EjH

i

However, equation (9.63) for the ®rst-order corrections to the eigenvalues

cannot be used directly at this point because the functions ö(0)are not known.

To ®nd E(1)

we multiply equation (9.62) by ø(0) , the complex conjugate of

one of the initial unperturbed eigenfunctions belonging to the degenerate

eigenvalue E(0)

, and integrate over all space to obtain

 

 

n

 

 

 

 

 

 

 

 

 

 

(0) ^ (0)

(0)

(1)

 

(0) ^

(1)

 

(1)

(0)

jH

ÿ En

i ÿhøjH

 

ÿ Ei

Applying the

hermitian

 

^

(0)

, we

see

that

the left-hand side

property of H

 

vanishes. Substitution of the expansion (9.54) for ö(0)using ã as the dummy expansion index gives

Xgn

(0) ^ (1)

(1) (0)

cáãjH

ÿ Ei 0,

ã 1

If we introduce the abbreviation

^ (1)

(0) ^ (1)

(0)

H nâ,nã

jH

i,

á, â 1, 2, . . . , gn

â, ã 1, 2, . . . , gn

and apply the orthonormality condition (9.55), this equation takes the form

9.5

Degenerate perturbation theory

 

251

gn

 

 

 

 

 

^ (1)

 

(1)

á, â 1, 2,

. . . , gn

(9:64)

cáã(H nâ,nã

ÿ Eäâã) 0,

ã 1

 

 

 

 

 

X

 

^ (1)

 

 

 

Note that the integrals

 

known initial

set of

H ná,nã are evaluated with the

unperturbed eigenfunctions, in contrast to the integrals in equation (9.63), which require the unknown functions ö(0). For a given eigenvalue E(1), the expression (9.64) is a set of gn linear homogeneous simultaneous equations, one for each value of â (â 1, 2, . . . , gn)

â 1:

^ (1)

(1)

^ (1)

cá3

^ (1)

^ (1)

 

0

cá1( H n1,n1 ÿ E) cá2 H n1,n2

H n1,n3

cá g n H n1,ng n

â 2:

^ (1)

^ (1)

(1)

 

^ (1)

^ (1)

 

0

cá1 H n2,n1

cá2(H n2,n2

ÿ E) cá3

H n2,n3

cá g n H n2,ng n

.

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

^ (1)

^ (1)

 

^ (1)

 

^ (1)

 

(1)

â gn: cá1 H ng n,n1 cá2 H ng n,n2 cá3 H ng n,n3 cá g n (H ng n,ng n

ÿ E)

 

 

 

 

 

 

 

 

0

Equation (9.64) has the form of (9.13) with the coef®cients cáã correspond-

 

 

 

 

 

 

 

 

 

 

 

 

 

^ (1)

 

 

 

(1)

 

 

 

 

ing to the unknown quantities xi and the terms ( H nâ,nã ÿ Eäâã) correspond-

ing to the coef®cients aki. Thus, a non-trivial solution for the

gn

coef®cients

cáã

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

^ (1)

 

1, 2, . . . , gn) exists only if the determinant with elements (H

nâ,nã ÿ

(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eäâã) vanishes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H(1)n1,n1 ÿ E(1)

H(1)n1,n2

 

 

 

H(1)n1,ng n

 

 

 

 

 

 

 

 

 

H(1)n2,n1

H(1)n2,n2

ÿ

E(1)

 

 

H(1)n2,ng

n

 

 

 

0

 

(9:65)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1)

(1)

 

 

 

(1)

 

 

(1)

 

 

 

 

 

 

 

 

 

H ng

n

,n1

H ng

n

,n2

 

 

H ng

n

,ng

n ÿ

En

á

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1)

 

is the secular

Only

for some values of the ®rst-order correction term E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1)

 

equation (9.65) satis®ed. This secular equation is of degree gn in

E, giving

gn roots

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E(1), E(1)

, . . . , E(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n1

 

n2

 

ng n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

^ (1)

is hermitian. The perturbed eigenvalues to

all of which are real because H

 

®rst order are, then

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

En1 E(0)n ëE(1)n1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eng n

E(0)n ëE(1)ng n

 

 

 

 

 

 

 

 

 

 

If the gn roots are all different, then in ®rst order the gn-fold degenerate unperturbed eigenvalue E(0)n is split into gn different perturbed eigenvalues. In this case, the degeneracy is removed in ®rst order by the perturbation. We