Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fiziologia_vistseralnykh_sistemStomat.doc
Скачиваний:
240
Добавлен:
22.05.2015
Размер:
32.18 Mб
Скачать

Особенности кровотечения после операции удаления зуба

Кровотечение, возникающее после операции удаления зуба, обычно прекращается через несколько минут. Характер кровотечения и его длительность определяются как местными, так и общими факторами. Местные причины, влияющие на продолжительность кровотечения – объем и степень повреждения тканей. К общим факторам, которые влияют на длительность кровотечения из лунки удаленного зуба, относятся различные болезни, вызывающие повреждения стенок сосудов (вазопатии) и нарушения системы свертывания крови.

Первую группу составляют болезни, при которых кровоточивость обусловлена физическими изменениями сосудистой стенки - ее повышенной проницаемостью и ломкостью.

Вторую группу болезней, вызывающих кровоточивость, связывают с нарушением процесса гемостаза. В этом случае увеличение времени кровотечения и свертывания крови обусловлено врожденными или приобретенными дефектами форменных элементов крови, плазменных и экстравазальных факторов.

Врач-стоматолог перед проведением хирургического вмешательства должен выяснить, не было ли у пациента длительного кровотечения при операциях или случайных ранениях.

При подготовке к операции пациента, склонного к кровотечениям, необходимо:

  1. определить количество тромбоцитов в крови,

  2. определить продолжительность кровотечения,

  3. определить время свертывания крови,

  4. проконсультировать больного у врача-гематолога.

Некоторых больных с повышенной кровоточивостью необходимо специально готовить к операции удаления зуба. При этом показано применение средств, повышающих свертывание крови:

  1. витамин С (аскорбиновая кислота),

  2. викасол,

  3. витамин К,

  4. хлористый кальций,

  5. переливание совместимой крови.

Аскорбиновая кислота укрепляет сосудистую стенку. Витамин К и викасол (синтетический заменитель витамина К) необходимы для синтеза в печени протромбина и ряда других факторов свертывания крови. Применение раствора хлористого кальция обосновано тем, что ионы кальция участвуют практически во всех этапах свертывания крови. В наиболее тяжелых случаях необходимо переливание одногруппной крови, содержащей весь необходимый набор тромбоцитарных и плазменных факторов свертывания.

У больных, страдающих заболеваниями крови (гемофилия, тромбоцитопения), операция удаления зуба и другие хирургические вмешательства в челюстно-лицевой области должны проводиться только в стационарах.

Тема 5. Функциональное состояние системы кровообращения

Основные дидактические элементы темы: Основные законы гемодинамики. Кровяное давление в различных отделах сосудистого русла. Систолический и минутный объем кровотока. Артериальное давление, методы его измерения. Кимограмма АД, волны 1, 2 и 3 порядка. Физиологическая и клиническая характеристика пульса. Методы исследования сердечной деятельности. Тоны сердца, механизмы их образования и регистрации. Электрокардиография.

Особенности регионального кровообращения зубочелюстной системы.

Сократительная активность сердца обеспечивает перемещение крови по сосудам. Вместе с сосудами сердце образует систему кровообращения, основной задачей которой является снабжение кровью органов и тканей организма. Непрерывное движение крови в системе органов кровообращения подчиняется законам гемодинамики.

Гемодинамика - это раздел физиологии кровообращения, использующий законы гидродинамики для исследования причин, условий и механизмов движения крови в сердечно-сосудистой системе.

Согласно законам гидродинамики количество жидкости, протекающей через трубу прямо пропорционально разности давления в ее начале и в конце, но обратно пропорционально сопротивлению потока жидкости.

Давление крови в отдельных участках по ходу сосудистого русла различно. Его величина обратно пропорциональна суммарному сопротивлению на уровне каждого участка сосудистого русла. Суммарное сопротивление сосудов увеличивается от аорты до полых вен. Поэтому внутрисосудистое давление уменьшается от артериального отдела к венозному. Разность давления в различных участках сосудистого русла является непосредственной причиной движения крови.

В аорте кровяное давление во время систолы достигает 130 мм рт. ст. В крупных артериях оно не превышает 110-120 мм рт. ст. В мелких артериях снижается до 70-80 мм рт. ст. В артериолах по мере уменьшения их диаметра внутрисосудистое давление падает с 70 до 35 мм рт. ст. В капиллярах: на артериальном конце 30-35 мм рт. ст., а на венозном - 10-15 мм рт. ст. В венулах кровяное давление продолжает снижаться, и в полых венах во время вдоха может быть даже ниже атмосферного.

Кровяное давление в капиллярах влияет на микроциркуляцию.

Микроциркуляция - кровоток в сосудах, обеспечивающих обмен веществ между кровью и тканями. К таким сосудам относят: 1) артериолы, 2) метартериолы, 3) артериовенозные анастомозы, 4) прекапиллярные сфинктеры, 5) капилляры, 6) венулы.

Микроциркуляция в разных регионах тела существенно различаются. Регион зубочелюстной системы включает в себя верхнюю и нижнюю челюсти с зубными рядами, а также их опорно-удерживающий и амортизирующий аппараты.

Микроциркуляторная система зубов представлена сетью сосудов, расположенных в коронковой и корневой части пульпы зуба.

Пульпа зуба – рыхлая соединительная ткань, заполняющей зубную полость, которая резко суживается в области верхушки корня. Поэтому важное значение приобретают противозастойные механизмы сосудистой сети пульпы зуба: 1) более тонкие стенки и больший диаметр посткапиллярных венул, по сравнению с артериолами; 2) суммарный просвет венул коронковой пульпы, больше, чем в области верхушки корня зуба; поэтому 3) линейная скорость кровотока в области верхушки корня зуба выше, чем в коронковой пульпе; 4) большое число анастомозов между артериолами коронковой и корневой пульпы, а также между венулами пульпы и венами периодонта.

Периодонт (периодонтальная связка) – плотная соединительная ткань, которая окружает корень зуба и соединяет его с надкостницей альвеолярной кости. Микроциркуляторное русло периодонта характеризуются: 1) обилием коллатералей (разветвлений) в капиллярном отделе; 2) наличием анастомозов с кровеносными сосудами прилегающих тканей; 3) большой плотностью сосудистой сети между костной альвеолой и корнем зуба.

Разветвленная сосудистая сеть между корнем зуба и стенкой альвеолы вместе с сетью анастомозов и коллатералей является морфологической основой микроциркуляторной амортизирующей системы периодонта. Она необходима для сглаживания колебаний гидравлического давления при жевании. Большое количество анастомозов с сосудистой системой альвеолярного отростка и сосудами десны способствуют быстрому перераспределению крови при сдавливании сосудов периодонта корнем зуба во время жевания.

Региональный кровоток зависит от величины артериального давления (АД).

Артериальное давление - это избыточное над атмосферным давление в артериях, обусловленное выбросом крови из сердца и периферическим сопротивлением сосудов кровотоку.

Сердечный выброс характеризуется минутным и систолическим объемами кровотока. Между величиной сердечного выброса и АД существует обратная связь.

Минутный объем кровотока (МОК) - это количество крови, которое нагнетается правым или левым желудочком в магистральные сосуды за одну минуту.

В состоянии покоя МОК составляет 4-6 л/мин. Он зависит от частоты сердечных сокращений и систолического объема крови. Рассчитывается МОК по формуле: МОК = СОК х ЧСС, где ЧСС – частота сердечных сокращений, СОК – систолический объем кровотока.

Систолический объем кровотока (СОК) - это количество крови, которое нагнетается правым или левым желудочком в магистральные сосуды во время их систолы.

Систолический объем составляет 60-80 мл крови. Рассчитывается СОК по формуле: СОК = МОК : ЧСС. Между величиной сердечного выброса и артериальным давлением имеется прямая связь. Чем больше количество крови, которая выбрасывается сердцем в сосуды, тем выше АД.

При каждой систоле и диастоле давление в артериях изменяется. Его подъем вследствие систолы желудочков характеризует систолическое (максимальное) давление, а спад во время диастолы - диастолическое (минимальное) давление. Разность между максимальным и минимальным давлением называют пульсовым давлением.

В плечевой артерии взрослого человека систолическое давление составляет 110-120 мм рт. ст., диастолическое - 60-80 мм рт. ст., а пульсовое - 40-50 мм рт. ст.

Кратковременное повышение артериального давления больше нормы называют артериальной гипертензией, а снижение - артериальной гипотензией.

Стойкое и продолжительное повышение величины артериального давления выше нормы называют артериальной гипертонией, а снижение – артериальной гипотонией.

Артериальное давление может быть измерено двумя путями:

1) прямым (кровавым), который используется в эксперименте на животных и в клинических условиях у людей,

2) косвенным (бескровным), используемым для измерения АД только у человека.

Для прямого измерения АД по методу Хелса в артерию вводят полую иглу, соединенную с манометром. Кривая, отражающая колебания АД во времени при прямой регистрации, называется кимограммой. На ней различают три вида волн: первого, второго и третьего порядка (рис.1).

Волны первого порядка - пульсовые, отражают колебания артериального давления, связанные с деятельностью сердца. Во время каждой систолы давление повышается, а в диастолу - снижается.

Волны второго порядка - дыхательные, связаны с изменением внутригрудного давления при вдохе и выдохе. Во время вдоха артериальное давление уменьшается, а при выдохе - увеличивается.

Волны третьего порядка связаны с медленным изменением тонуса сосудодвигательного нервного центра, регулирующего просвет сосудов. Активность нейронов этого центра периодически изменяется. Она вызывает циклические сдвиги просвета артериальных сосудов, а значит и их сопротивления кровотоку, что обусловливает колебания АД.

Рис.1. Кимограмма артериального давления

1) волны первого порядка (пульсовые), 2) волны второго порядка (дыхательные), 3) волны третьего порядка (сосудодвигательные).

Для косвенного измерения АД у человека используют манжеточные способы: пальпаторный (Рива-Роччи) и аускультативный (Короткова), которые основаны на искуственном сдавлении артериального сосуда.

Пальпаторным способом Рива-Роччи можно определить только систолическое давление. Этот способ основан на прощупывании пульса ниже места сдавления артерии полой резиновой манжетой, которую укрепляют на плече и соединяют с манометром. Накачивание в манжету воздуха создает в ней давление, которое сжимает артерию. Момент, когда сосуд перестает пропускать кровь, устанавливают по прекращению пульса на лучевой артерии. Затем медленно выпускают воздух из манжеты до появления пульса. Стрелка манометра в момент появления пульса показывает систолическое давление.

Аускультативный способ Короткова позволяет определить не только систолическое, но и диастолическое давление. Способ основан на выслушивании сосудистых тонов - искусственно вызванных звуковых явлений, слышимых через фонендоскоп ниже места сдавливания артерии манжетой. Сосудистые тоны Короткова возникают в результате турбулентного движения крови во время систолы через искусственно суженное отверстие артерии.

Во время систолы высокое давление крови внутри артерии преодолевает давление в манжетке. Сдавленная артерия приоткрывается и пропускает кровь, которая, двигаясь с большой скоростью, образует завихрения и заставляет вибрировать стенки сосуда. Это сопровождается появлением шумовых тонов. При снижении давления в манжете артерия полностью раскрывается, кровь проходит по ней как во время систолы, так и во время диастолы. Скорость кровотока в артерии снижается, и движение крови через артерию приобретает линейный характер. Поэтому сосудистые тоны исчезают. Показания манометра в момент исчезновения сосудистых тонов соответствуют диастолическому давлению.

Ритмические колебания стенки артерии, обусловленные периодическим повышением кровяного давления во время систолы и эластичностью стенки артериального сосудистого русла, называют артериальным пульсом.

Повышение внутрисосудистого давления во время систолы желудочков вызывает растяжение аорты. Во время диастолы, когда давление снижается, аорта суживается вследствие своей эластичности. Волна колебания сосудистой стенки распространяются со скоростью 7-8 м/с от аорты до артериол и капилляров. С возрастом по мере понижения эластичности сосудов скорость распространения пульсовой волны увеличивается.

В клинике, путем пальпации поверхностных артерий, определяют пять основных характеристик пульса: 1) частоту - частый или редкий, 2) ритм - ритмичный или аритмичный, 3) наполнение - полный или неполный, 4) напряжение - твердый или мягкий, 5) скорость распространения пульсовой волны - быстрый или медленный.

У здоровых людей частота сердечных сокращений (ЧСС) колеблется от 60 до 80 ударов в минуту. Снижение ЧСС меньше 60 ударов в минуту, называют брадикардией. Увеличение ЧСС больше 80 в минуту, называют тахикардией.

Объективный метод регистрации артериального пульса с поверхности тела называют сфигмографией.

На сфигмограмме различают (рис.2):

1) анакроту,

2) катакроту,

3) инцизуру (выемку),

4) дикротический подъем.

Рис.2. Сфигмограмма

Анакрота - это крутой подъем, соответствующий расширению артерий во время систолы желудочков.

Катакрота - это пологое снижение пульсовой кривой, соответствующее спадению артерии во время диастолы сердца. На катакроте имеется инцизура (выемка) и дикротический подъем. В тот момент, когда желудочки сердца начинают расслабляться, давление в крупных артериях резко падает и на пульсовой кривой появляется глубокая выемка. Когда давление в желудочках становится меньше, чем давление в артериях, кровь начинает перемещаться к сердцу. Под влиянием обратного тока крови закрывается полулунный клапан – створки, которые располагаются между желудочком и аортой. Кровь отражается от клапана и создает кратковременную вторичную волну повышения давления. Она вызывает повторное растяжение артериальных стенок. В результате на сфигмограмме появляется вторичный кратковременный дикротический подъем.

Важное место в исследовании функционального состояния сердечно-сосудистой системы занимают методы регистрации механической, акустической и электрической активности сердца.

Регистрация сердечной деятельности, выполненная с помощью каких-либо инструментальных способов, называется кардиографией. В зависимости от регистрируемого показателя различают механокардиографию, фонокардиографию, электрокардиографию и др.

Фонокардиография - это метод регистрации акустических волн, возникающих во время сердечной деятельности.

Периодически повторяющиеся, кратные шумы, которые возникают в результате деятельности сердца, называют тонами сердца.

Различают четыре сердечных тона.

Первый тонсистолический, характеризуется низкой частотой и большой продолжительностью. Систолический тон обусловлен:

1) закрытием и напряжением атриовентрикулярных клапанов, расположенных между предсердиями и желудочками,

2) открытием полулунных клапанов, расположенных между желудочками и магистральными артериями (аорта и легочный ствол),

3) вибрацией стенок сердца во время систолы желудочков.

Второй тон - диастолический, высокочастотный и короткий. Диастолический тон обусловлен:

1) закрытием полулунных клапанов,

2) открытием атриовентрикулярных клапанов.

Третий тон - низкочастотный и низкоамплитудный. Он связан с вибрацией стенок желудочков во время фазы быстрого наполнения кровью.

Четвертый тон - низкочастотный и низкоамплитудный. Он обусловлен вибрацией стенок сердца во время систолы предсердий.

Первые два тона слышны и при аускультации. Первый тон выслушивается в 5-м межреберье слева на 1-2 см медиальнее среднеключичной линии и у основания мечевидного отростка. Второй тон выслушивается во 2-м межреберье справа и слева от грудины.

В настоящее время, благодаря доступности и технической простоте для исследования сердечной деятельности в клинике широко используется электрокардиография.

Электрокардиография - это метод регистрации суммарной электрической активности сердца с поверхности тела.

В состоянии покоя вся поверхность миокарда заряжена положительно. Распространение возбуждения от водителя ритма по проводящей системе сердца и сердечной мышце сопровождается возникновением на поверхности возбужденных клеток отрицательного потенциала. В связи с тем, что возбуждение охватывает различные отделы сердца последовательно, на его поверхности возникает разность потенциалов между возбужденными и еще не возбужденными участками.

Благодаря высокой электропроводности тканей организма, электрический потенциал сердца можно регистрировать с поверхности тела. Условную линию поверхности тела, на которой регистрируются одинаковые по форме и амплитуде биопотенциалы сердца, называют электросиловой линией.

Вследствие несимметричного расположения сердца в грудной клетке, электросиловые линии распределены на поверхности тела неравномерно. Поэтому форма и амплитуда регистрируемых биопотенциалов различаются при записи с разных участков тела. Электросиловую линию, которая соединяет точки с наибольшей разностью потенциалов, называют электрической осью сердца. У человека она обычно совпадает с линией, соединяющей правую руку и левую ногу.

Кривую, отражающую изменения электрического поля сердца, называют электрокардиограммой (ЭКГ).

Для регистрации ЭКГ у человека используют стандартные биполярные и монополярные способы отведения биопотенциалов.

Отведения биопотенциалов – это места расположения контактных электродов на поверхности тела. Условная линия, которая соединяет два электрода, участвующих в формировании электрокардиографического отведения, называется осью отведения. Чаще всего для регистрации ЭКГ используют биполярные отведения.

Стандартные биполярные отведения позволяют регистрировать динамику разности потенциалов сердца на трех осях: I отведение - правая и левая рука, II отведение - правая рука и левая нога, III отведение - левая рука и левая нога.

Типичная ЭКГ человека состоит из трех положительных зубцов (P, R, T) и двух отрицательных (Q, S). Промежутки между зубцами называются сегментами, совокупность зубца и последующего сегмента – интервал (рис.3).

Рис.3. Электрокардиограмма

P – зубец P, PQ – интервал P-Q, Q – зубец Q, R – зубец R, RR – интервал R-R, S – зубец S, T – зубец T, TP - сегмент T-P, QRS – желудочковый комплекс QRS.

Зубец Р отражает возникновение возбуждения в синоатриальном узле и его распространение по миокарду предсердий. Длительность зубца Р равна в среднем 0,1 с.

Интервал PQ характеризует время от начала возбуждения в синоатриальном узле до возникновения возбуждения в атриовентрикулярном узле. Продолжительность интервала PQ - 0,12-0,18 с.

Сегмент PQ длится 0,02-0,08 с и характеризует время задержки проведения возбуждения в атриовентрикулярном узле. Сегмент PQ располагается на изоэлектрической линии, что отражает полный охват предсердий возбуждением.

Желудочковый комплекс QRST обусловлен возникновением и распространением возбуждения в проводящей системе и миокарде желудочков. Продолжительность комплекса QRST составляет около 0,36 с.

Быстрый начальный компонент этого комплекса (QRS) длится 0,06-0,09 с. Он совпадает с деполяризацией желудочков и состоит из отрицательных зубцов Q, S, а также положительного зубца R.

Зубец Q отражает возбуждение сосочковых мышц, межжелудочковой перегородки и верхушки сердца.

Зубец R характеризует возбуждение оснований желудочков.

Зубец S отражает полный охват возбуждением желудочков, о чем свидетельствует изопотенциальное расположение сегмента ST. Вся поверхность желудочков становится электроотрицательной и, поэтому, разность потенциалов между отдельными участками миокарда исчезает.

Зубец Т отражает процессы реполяризации миокарда желудочков. Он является самой изменчивой частью ЭКГ, т.к. реполяризация происходит не одновременно в разных волокнах сердечной мышцы.

Изопотенциальный сегмент ТР характеризует общую паузу, когда вся поверхность сердца снова становится электроположительной.

Электрокардиография является важным диагностическим методом исследования и позволяет выявить:

1) расположение электрической оси сердца,

2) появление в сердце эктопических очагов возбуждения,

3) нарушения проведения возбуждения,

4) изменения сердечного ритма и длительности кардиоцикла,

5) наличие и локализацию зон повреждения миокарда.

Соседние файлы в предмете Нормальная физиология