Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Милькович. Жизнь и история земли (1928)

.pdf
Скачиваний:
103
Добавлен:
15.08.2013
Размер:
3.91 Mб
Скачать

разнесены ветрами вокруг всего земного шара. Несколько лет плавал этот пепел в атмосфере, вызывая явление «красных зорь» и «светящихся облаков».

Весной 1902 г. погиб г. Сен-Пьер на Мартинике от извержения вулкана Мон-Пеле. Интересно, что за три дня до извержения специальная комиссия осматривала вулкан и пришла к заключению, что городу опасность не грозит, так как кратер широко открыт и от края его к морю по склону горы идет долина, по которой, несомненно, и направится лава, минуя город. Однако 8 мая город был уничтожен, и из 40 000 жителей случайно уцелел один человек. Случилось нечто непредвиденное: хотя лава действительно города не залила, но на склоне вулкана, обращенном к городу, образовалась трещина, из нее вышло облако ядовитого и раскаленного газа и со скоростью вихря слетело на город (рис. 60). Здания были снесены, а трупы жителей носили следы ожогов и удушья. По-видимому, лава была слишком густа, и газы, не имея возможности выйти сквозь нее, проложили себе путь, разорвав склон горы.

Как ни грандиозны вулканические извержения, однако их геологическая работа не может привести к крупным изменениям лика земли. Базальтовые покровы лав в Индии представляют явления скорее исключительных размеров, но и от них еще слишком далеко до изменения карты земли или до создания новых гор.

Точка зрения ярых «вулканистов» на извержения как на причину горообразования (см. рис. 56) не может быть поддержана. Вулканизм только спутник горообразования; горообразовательные процессы есть явление первичное а вулканизм — вторичное, производное.

Но вулканические извержения являются для нас показателями того напряжения, которым обладают земные недра. Вулканы есть те пути, по которым магма вступает в химическое взаимодействие с атмосферой, почвой и гидросферой. С изменением Характера химической работы земных недр неминуемо должен измениться и химизм земной поверхности. Перестав быть в наших глазах рычагом горообразования, вулканизм рассматривается нами

111

теперь как регулятор химизма земного шара. В этом сношении и для органического мира населяющего земной шар, далеко не безразлична работа той химической лаборатории, которую представляет собой магма.

Сейсмические явления.

Связь землетрясений с горообразованием. Как вулканические явления, так и явления сейсмические, или землетрясения, современная наука ставит в связь с процессами горообразования и видит в них спутников этих процессов. Мы знаем уже, что горообразование начинается с опускания известного участка земной коры, для чего необходима неравномерная нагрузка в двух соседних областях литосферы. Перенос материалов с одного участка на другой может длиться столетия, и до поры до-времени литосфера все-таки будет сохранять равновесие; но рано или поздно равновесие нарушится, и произойдет разрыв земной коры. Этому моменту разрыва и резкого перемещения двух участков литосферы и соответствует землетрясение. В глубине земли происходит; толчок, частицы литосферы приходят в движение. Вокруг центра землетрясения возникает «сейсмическая волна». Она быстро расходится; достигает поверхности земли в точке, которая называется эпицентром,

ираспространяется дальше причём наблюдателю будет казаться, что. от эпи-

центра по поверхности земли распространяется круговая волна, тогда как сейсмическая война имеет в действительности скорее шарообразную форму1.

Сейсмические удары направлены по радиусам волны. Поэтому в самом эпицентре удары будут направлены снизу вверх; чем дальше от эпицентра, тем они будут более косыми, а на окраине области землетрясения смещения почвы будут почти горизонтальными. Видимая сейсмическая волна, расходясь от эпицентра наподобие круга от брошенного в воду камня, производит разнообразнее разрушения; причем замечено, что стены зданий, параллельные волне, разрушаются сильнее стен, к ней перпендикулярных. Фабричные

идымовые трубы падают так, что вершинами своими обращаются по направлению к эпицентру.

1 Вернее, сейсмическая волна имела бы вполне шарообразную форму, если бы земной шар обладал полной однородностью.

112

Сильные перемещения почвы приводят к образованию различных дислокаций: «происходят сбросы, сдвиги, оползни и обвалы. Сбросы происходят вблизи эпицентра, сдвиги несколько дальше (рис. 68). Во время землетрясения в Японии в Овари-Мино поперек долины произошел сброс на протяжении 64 км, причем вдоль трещины почва осела на 6 м Вместе с тем произошел и горизонтальный сдвиг на 4 м, что хорошо видно в местах, где трещина перерезала дороги. В 1861 г. произошло землетрясение в Греции около Коринфа. Местность представляла собою покатую к морю равнину, примыкавшую к горной цепи. От удара образовалась трещина вдоль этой цепи на протяжении 15 км. Вдоль этой трещины вся местность сильно осела, и при этом

вморе погрузилась широкая полоса земли. В горных местностях трещины при землетрясениях простираются обыкновенно вдоль склонов, вызывая обвалы и оползни.

Относительно геологического эффекта землетрясений можно повторить то же самое, что мы уже говорили об извержениях: дислокации, сопровождающие землетрясения, в конечном счете слишком ничтожны, чтобы ими можно было объяснить крупные изменения в лике земли — образование гор или морских впадин. У нас нет оснований допускать, что те и другие могли возникнуть в результате каких-то особенно грандиозных землетрясений, имевших будто бы место в прошлые геологические эпохи. Изменений лика земли создаются горообразующими процессами, которые работают медленно

втечение миллионов лет и в которых проявляется прогрессивное охлаждение земного шара.

113

Но эти изменения слагаются из бесчисленного множества мелких перемещений земных масс: вот эти-то перемещения и сопровождаются землетрясениями. Поэтому становится понятной приуроченность землетрясений к тем областям земли, где земная кора находится в неустойчивом состоянии: к берегам морей, к линиям простирания молодых, еще не закончивших своего развития, складчатых горных цепей. Поэтому, далее, сейсмические области часто являются в то же самое время и областями вулка-

ническими (рис. 70).

114

115

Конечно, сильные землетрясения, которые заставляют Говорить о себе весь мир, случаются не часто Но если сосчитать число всех подземных ударов и толчков, из которых подавляющее большинство настолько слабы, что могут быть отмечены лишь специальными приборами, то их окажется в год до 30 000. Эта цифра совершенно изменяет наше обычное представление о землетрясениях как о явлениях редких и исключительных. Их, наоборот, нужно считать явлениями повседневными и нормальными для земной корыЭто — своего рода пульс литосферы, свидетельствующий о непрекращающейся работе горообразующих сил, Называя, горы «морщинами зети», мы не должны думать, что это «морщины старости»; образование складчатых гор свидетельствует еще О сравнительной молодости земли, об упругости и пластичности земной коры; так и про землетрясения нужно сказать, что, когда они прекратятся совсем, наступит уже геологическая дряхлость земли как мирового тела.

Делались многочисленные попытки подметить связь между землетрясениями и другими явлениями природы. Так, обратили внимание на то, что напряженность сейсмических явлений значительно увеличивается с уменьшением атмосферного давления, что землетрясения чаще происходят при прохождении, циклонов. Однако не следует думать, что атмосферное давление может само по себе вызвать землетрясение: циклон может, самое большее, дать «повод» к землетрясению. Земная кора, уже долгое время, быть может, неравномерно нагружаемая, находилась в состоянии неустойчивого равновесия, и ничтожного толчка оказалось достаточно, чтобы вызвать в ней, наконец, перемещение. В роли такого толчка может выступить и циклон, но, конечно, тысячи циклонов могут бороздить, атмосферу и тем. не менее они не вызовут землетрясения, если для этого ничего еще не подготовлено в толще литосферы.

Сейсмические волны. Описанные выше «видимые» сейсмические волны, вызывающие разрушение зданий и дислокации наблюдаются только в местностях, близких к эпицентру. Но кроме них возникают при землетрясениях еще иные колебания, значительно осложняющие данную нами схему сейсмических явлений (см. рис. 71). Эти колебания настолько слабы, что их можно заметить только при помощи особых приборов — сейсмографов, записывающих всевозможные, самые мелкие дрожания земной коры.

Оказывается, что один и тот же удар в недрах земли вызывает собственно три рода колебаний, три рода волн. Первые колебания— продольные; они дают волну сжатия и разрежения, аналогичную звуковой волне. Вторые колебания — поперечные; они дают волну сдвига, аналогичную волне световой. Оба рода колебаний распространяются из центра землетрясения с различными скоростями, причем скорость распространения колебаний продольных вдвое больше скорости распространения поперечных колебаний.

116

117

Так, в поверхностных слоях литосферы скорость первых колебаний около 7 км а, вторых — около 4 км в сек. На так как расстояние от центра до эпицентра невелико, то в этой области опоздание вторых колебаний мало заметно, и волны достигают поверхности земли почти одновременно и вызывают весьма сложные и капризные движения частиц почвы. Кроме того от эпицентра в сеою очередь начинают исходить во все, стороны третьи волны, названные рэлеевскими, или поверхностными, так как они распрбстраняются только в литосфере, как круг на воде. Скорость их около 3 км в секунду; они могут обойти вокруг всей земли, сойтись в другом полушарии к точке, прямо противоположной эпицентру и

снова разойтись от нее во все стороны по земной коре, но замечательно, что в глубину земли они не идут и как бы затухают в пластичной пиросфере. Все эти три рода колебаний (рис. 71) настолько слабы, что разрушений причинить не могут. Сейсмограф, записывающий свои дрожания, будучи помечен близко от эпицентра, не различит отдельные роды волн ввиду почти одновременного достижения ими земной поверхности. Но если мы будем помещать его все дальше и дальше от эпицентра (рис. 72), то начнет уже сказываться разница в скорости этих трех волн, и вдали от области землетрясения сейсмограф вычертит нам характерную кривую — сейсмограмму, на которйй мы ясно заметим запись всех трех волн: продольных (I1) .поперечных (I2) и рэлеевских (II) (рис. 73).

118

Первые две фазы отличаются небольшими амплитудами и короткими периодами колебаний, третья — большими амплитудами и длинными периодами. Тавдм образом событие, которое само по себе длится лишь не-скоко секунд, растягивается на очень продолжительное время, и сейсмограф, удлиняя свою запись, позволяет нам проанализировав, сейсмический процесс во всех деталях.

Замечательно, что волны первой фазы колебаний изменяют свою скорость в зависимости от того, на какой глубине они идут от центра землетрясения к месту наблюдения. Скорость их увеличивается по ере того, как им приходится проходить бблыпую толщу земных, масс.

Барисфера. В сейсмографе наука приобретает весьма чувствительный прибор для изучения земных недр, недоступных непосредственно человеку. Пользуясь показаниями сейсмографа, мы можем до известной степени составить себе представление о физическом состоянии земного ядра. Это ядро получило название «барисферы», и высокий удельный вес земли заставляет предполагать присутствие в барисферевесьма тяжелых веществ (напр, железа).

Два факта кладутся в основу наших суждений о физическом состоянии земного яра: факт постепенного нарастания температуры с углублением в землю и факт увеличения с углублением давления.

Слой постоянной годовой температуры есть граница, до которой проникает в литосферу действие солнечных лучей. Ниже этой границы мы вступаем в область собственной тепловой энергии земного шара. Первое, что мы при этом замечаем, — это повышение температуры с глубиною. Углубление, соответствующее повышению температуры на 1°, называется «геотермическим градиентом», а поверхности одинаковой температуры внутри литосферы «геоизотермами». В среднем геотермический градиент равен 33 м. Повышение температуры с глубиною делает для нас понятным присутствие на глубине расплавленной магмы. Принимая температуру поверхности земли равной 0°, мы должны допустить в центре земли температуру около 200000°. Даже если допустить увеличение градиента с глубиною, то и тогда температура в центре земли должна быть около 100000°. Между тем мы знаем, что для каждого газа существует определенная «критическая температура», выше которой газ никаким давлением не может быть сгущен в жидкость. А так как температура в 100000° наверное выше всех критических температур всех газов, то отсюда надо заключить, что барисфера должна быть газообразной.

Факт нарастания давления приводит к иным заклкчениям. Давление слоев равно их весу, и вычисление показывает,1 давление в центре земли должно измеряться несколькими миллионами атмосфер. А так как давление повышает температуру плавления горных пород, то мы можем допустить, что, несмотря на крайне высокую температуру земных недр, вещества барисферы должны быть в твердом состоянии.

1 Расчеты показывают, что для образования Альп земная поверхность должна была сократиться на 120 000 км3, причем радиус земли укоротился менее, чем на 1 км.

119

Вопрос в настоящее время далеко еще не решен, ровидимому, однако, теория газообразной барисферы имеет больше преимуществ. Как известно, образование складчатых гор является результатом сокращения земной поверхности и уменьшения длины земного радиуса. Мы можем, расправив мысленно все складки горных цепей, определить, как именно велико было это сокращение. Другими словами, мы можем определить коэффициент сжатия земного шара. Вычисления (Лукашевич) показывают, что он равен 0,00075, т. е. в 16 раз больше коэффициента сжатия железа и в 25 раз больше коэффициента сжатия горных пород. Величина его одного порядка с величиной коэффициентов сжатия газов, так как газы сжимаются гораздо более, чем твердые тела, при охлаждении на одно и то же число градусов. Итак, земной шар в целом реагирует в термическом отношений, как тело газообразное. Суша, вследствие размывания, понижается ежегодно на 0,1 мм; горы размываются еще быстрее. Как ни мала эта цифра, но в миллионы лет и такое размывание должно привести к громадным результатам: все горы должны бы быть смыты до основания. Отсюда ясно, что скорость поднятия гор больше скорости их размывания. Земной шар, шлифуемый снаружи эксогенными силами, тем не менее сравнительно быстро успевает воздвигнуть на поверхности своей все новые и новые горы. Эта скорость говорит о значительной еще пластичности земного шара, свидетельствует о газообразной консистенции большей части его массы.

Но, признавая газообразное состояние барисферы, мы должны внести весьма существенную поправку в наши обычные представления на этот счет. К газу барисферы, находящемуся при температуре выше критической, неприложимо то, что мы привыкли связывать с понятием о газе. Этот «закритический газ» обладает совершенно особыми свойствами: закон БойляМариотта, например, к нему неприложим; он отличается громадным внутренним трением, вязкостью и плотностью. Огромная скорость распространения сейсмических колебаний внутри земли говорит о том, что твердость ядра земли должна значительно превосходить твердость стали. Словом, закритический газ барисферы совмещает признаки весьма упругого газа с признаками весьма твердого тела. Свойства барисферы, свойства земного шара в его целом, требуют допущения одновременно и твердого и газообразного ядра. Этим требованиям и может удовлетворить только «закритический газ».

Атмосфера и климат.

Земля как тепловая машина. Жизнь земли есть не что иное как вечная смена явлений. Из туч выпадают дожди, дождевые потоки размывают землю и Сбегают в реки, речная вода медленно движется, отмывая частицы почвы от берегов, и все это — песчинку за песчинкой — сносит в море, выдвигая свою дельту все дальше и дальше и засыпая осадками морской бассейн. И, в то время как в реках перед нами движутся те материалы, из которых со временем на морском дне будут воздвигнуты новые горы, горы, ныне сущест-

120