Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Итоговая аттестация

.pdf
Скачиваний:
1516
Добавлен:
26.05.2015
Размер:
3.91 Mб
Скачать

Сварщик. Электрогазосварщик. Итоговая аттестация

71

последний слои многослойного шва не проковывают. Швы на металле, склонном к закалке, проковывать нельзя. Преимущество проковки состоит в ее простоте и маневренности.

Прокатку шва выполняют при сварке тонколистового металла.

В процессе прокатки растягивающие напряжения уменьшаются. Преимущество ее перед проковкой состоит в статическом характере приложения давления и возможности плавного его регулирования.

Статическое нагружение элементов сварной конструкции возможно в процессе сварки или чаще всего после полного остывания шва. В качестве такого нагружения применяют растяжение или изгиб с образованием растягивающих напряжений в зонах, где остаточные напряжения максимальны. Это приводит к пластическим деформациям и значительному уменьшению остаточных напряжений.

Отпуск после сварки, обычно применяемый для выравнивания структуры шва и околошовной зоны, также снижает внутренние напряжения. Отпуск может быть общим, когда нагревается все изделие, и местным, когда нагревается лишь часть его в зоне сварного соединения. Преимущество общего отпуска состоит в том, что снижение напряжений происходит во всей сварной конструкции независимо от ее сложности.

Наиболее часто применяют высокий отпуск при температуре нагрева 550-680ºС. Операция отпуска состоит из четырех стадий: нагрев; выравнивание температуры по длине и сечению изделия; выдержка при температуре отпуска; охлаждение. Выдержка независимо от толщины металла обычно составляет около 3 ч, после чего происходит естественное охлаждение. По частоте применения отпуск сварных конструкций значительно превосходит все методы снятия внутренних напряжений

(рис. 50).

Рис. 50. Стадии отпуска сварных конструкций: 1- поверхность изделия; 2 - внутренние зоны металла

Вопрос 2. Технология и техника кислородной резки (основные условия резки металлов, назначение, сущность).

Основные условия резки металлов. Кислородной резке подвергаются только те металлы и сплавы, которые удовлетворяют следующим основным условиям:

1.Температура воспламенения металла в кислороде должна быть ниже температуры его плавления. Лучше всех металлов и сплавов этому требованию удовлетворяют низкоуглеродистые стали, температура воспламенения которых в кислороде около 1300°С, а температура плавления около 1500ºС. Увеличение содержания углерода в стали сопровождается повышением температуры воспламенения в кислороде с понижением температуры плавления. Поэтому с увеличением содержания углерода кислородная резка сталей ухудшается.

2.Температура плавления окислов металлов, образующихся при резке, должна быть ниже температуры плавления самого металла, в противном случае тугоплавкие окислы не будут выдуваться струей режущего кислорода, что нарушит нормальный процесс резки. Этому условию не удовлетворяют высокохромистые стали и алюминий. При резке высокохромистых сталей образуются тугоплавкие окислы с температурой плавления 2000°С, а при резке алюминия - оксид с температурой плавления около 2050°С. Кислородная резка их невозможна без применения специальных флюсов.

Сварщик. Электрогазосварщик. Итоговая аттестация

72

3.Количество теплоты, которое выделяется при сгорании металла в кислороде, должно быть достаточно большим, чтобы поддерживать непрерывный процесс резки. При резке стали около 70% теплоты выделяется при сгорании металла в кислороде и только 30% общей теплоты поступает от подогревающего пламени резака.

4.Образующиеся при резке шлаки должны быть жидкотекучими и легко выдуваться из места

реза.

5.Теплопроводность металлов и сплавов не должна быть слишком высокой, так как теплота, сообщаемая подогревающим пламенем и нагретым шлаком, будет интенсивно отводиться от места реза, вследствие чего процесс резки будет неустойчивым и в любой момент может прерваться. При резке стали сгорание железа в кислороде протекает по реакциям.

При проведении кислородно-ацетиленовой резки присутствует два вида пламени: подогревающее и режущая струя кислорода.

В начале газовой резки подогрев осуществляется только подогревающим пламенем до температуры воспламенения. Мощность подогревающего пламени зависит от толщины и химического состава разрезаемого металла и сплава.

Максимальная температура пламени находится на расстоянии 2-3 мм от конца ядра, поэтому для наиболее эффективного нагрева расстояние от конца ядра до поверхности разрезаемого металла должно составлять 2-3 мм. Подогревающее пламя надо регулировать на несколько повышенное содержание кислорода, так как слегка окислительное пламя обеспечивает интенсивный нагрев и улучшает качество реза.

Сжигание металла и удаление продуктов сгорания из реза осуществляется струей режущего кислорода. Количество кислорода, проходящего через сопло мундштука, зависит от конструкции сопла, давления кислорода и скорости истечения струи.

При газовой резке требуется определенное количество кислорода. Недостаток его приводит к неполному сгоранию железа и неполному удалению оксидов, а избыток кислорода охлаждает металл. Количество кислорода, необходимое для полного окисления разрезаемого металла, определяется количеством сжигаемого металла и средним расходом на его сжигание.

Основными параметрами режима кислородной резки являются:

• мощность подогревающего пламени;

• давление режущего кислорода;

• скорость резки.

Мощность подогревающего пламени характеризуется расходом горючего газа в единицу времени и зависит от толщины разрезаемого металла. Она должна обеспечивать быстрый подогрев металла в начале резки до температуры воспламенения и необходимый нагрев его в процессе резки. Для резки металла толщиной до 300 мм применяют нормальное пламя. При резке металла больших толщин лучшие результаты получают при использовании пламени с избытком горючего (науглероживающее пламя). При этом длина видимого факела пламени (при закрытом вентиле кислорода) должна быть больше толщины разрезаемого металла.

Выбор давления режущего кислорода зависит от толщины разрезаемого металла, размера режущего сопла и чистоты кислорода.

При увеличении давления кислорода увеличивается его расход. Давление кислорода выбирается в зависимости от толщины металла: чем чище кислород, тем меньше его расход на 1 пог. метр реза.

Скорость перемещения резака должна соответствовать скорости горения металла. От скорости резки зависят устойчивость процесса и качество вырезаемых деталей. Малая скорость приводит к оплавлению разрезаемых кромок (рис. 51, а), а большая - к появлению непрорезанных до конца участков реза (рис. 51, в). Скорость резки зависит от толщины и свойств участков реза. Скорость резки зависит от толщины свойств разрезаемого металла, вида резки, метода резки. Поэтому допустимую скорость резки определяют опытным путем. Скорость резки перемещения резака считают нормальным, если пучок искр будет выходить почти параллельно кислородной струе

(рис. 51, б).

Большое влияние на качество реза и производительность резки оказывает подготовка металла под резку.

Сварщик. Электрогазосварщик. Итоговая аттестация

73

Рис. 51. Характер выброса шлака:

а - скорость резки мала; б - оптимальная скорость; в - скорость велика

Перед началом резки листы подают на рабочее место и укладывают на подкладки так, чтобы обеспечить беспрепятственное удаление шлаков из зоны реза. Зазор между полом и нижним листом должен быть менее 100-150 мм. Поверхность металла перед резкой должна быть очищена. На практике окалину, ржавчину, краску и другие загрязнения удаляют с поверхности металла нагревом зоны резки газовым пламенем с последующей зачисткой стальной щеткой.

Перед началом резки газорезчик должен установить необходимое давление газов на ацетиленовом и кислородном редукторах, подобрать нужные номера наружного и внутреннего мундштуков в зависимости от вида и толщины разрезаемого металла.

Процесс резки начинают с нагрева металла в начале реза до температуры воспламенения металла в кислороде. Затем пускают режущий кислород (происходит непрерывное окисление металла по всей толщине) и перемещают резак по линии реза.

Для обеспечения высокого качества реза расстояние между мундштуком и поверхностью разрезаемого металла необходимо поддерживать постоянным. Для этой цели резаки комплектуются направляющими тележками.

Процесс кислородной резки основан на свойстве металлов и их сплавов сгорать в струе чистого кислорода.

Процесс резки включает в себя следующие стадии:

нагрев начального участка резки до температуры воспламенения металла в кислороде;

сгорание металла в струе кислорода;

расплавление образующихся окислов и выдувание их из места разреза;

нагрев соседних слоев металла в кислороде и перемещение резака вдоль линии реза.

Резку начинают с края детали. При необходимости резки с середины пробивают отверстие (при толщине металла до 50 мм) пламенем вертикально стоящего резака, разогревая место резки и плавно открывая вентиль режущего кислорода по мере углубления отверстия.

Угол наклона резака 20-45° в сторону, обратную направлению резки. При криволинейной резке резак держат вертикально.

3. Задача. Назовите ваши действия в случае обратного удара пламени при работе с ацетиленовым генератором при сварке металла.

Перекрыть ацетиленовый вентиль горелки и распределительный вентиль на генераторе. Охладить горелку.

Билет № 20

Вопрос 1. Кислородно-флюсовая резка металла.

Высоколегированные хромистые, хромоникелевые стали, чугун и цветные металлы не могут подвергаться обычной кислородной резке, так как они не удовлетворяют основным условиям резки.

Хромистые и хромоникелевые нержавеющие стали на поверхности реза образуют тугоплавкие оксиды хрома с температурой плавления около 2000°С, которые препятствуют нормальному протеканию процесса резки. Поэтому кислородная резка этих сталей требует применения особых способов.

Сварщик. Электрогазосварщик. Итоговая аттестация

74

Чугун имеет температуру плавления ниже температуры воспламенения, поэтому при обычной резке чугун будет плавиться, а не сгорать в кислороде. Содержащийся в чугуне кремний образует тугоплавкую окись кремния, которая также препятствует резке.

Цветные металлы (медь, алюминий, латунь, бронза) имеют большую теплопроводность, образуют тугоплавкие окислы и также не поддаются обычной газовой резке. Удалить тугоплавкие окислы можно либо переводом их в легкоплавкие, либо введением в зону реза дополнительной теплоты.

Резку высоколегированных сталей можно обеспечить наложением вдоль линии реза низкоуглеродистой стальной полосы, при сгорании которой выделившаяся теплота, а также переходящее в шлак расплавленное железо и его оксиды способствуют разжижению оксидов хрома. Этим способом можно резать нержавеющие стали толщиной до 20 мм, однако при этом рез получается широким, а скорость резки низкая.

Для резки хромистых, хромоникелевых нержавеющих сталей, чугуна и цветных металлов применяют способ кислородно-флюсовой резки. Сущность его заключается в том, что в разрез вместе с режущим кислородом вводится порошкообразный флюс, при сгорании которого выделяется дополнительная теплота и повышается температура в зоне реза.

Кроме того, продукты сгорания флюса, взаимодействуя с тугоплавкими оксидами, образуют жидкотекучие шлаки, которые легко удаляются из зоны реза, не препятствуя нормальному протеканию процесса.

Основным компонентом порошкообразных флюсов, применяемых при кислородно-флюсовой резке металлов, является железный порошок. Железный порошок при сгорании выделяет большое количество теплоты - около 1380 кДж/кг.

При выборе железного порошка необходимо иметь в виду, что процесс резки зависит от его химического состава и его грануляции. При использовании порошков, содержащих до 0,4% углерода

идо 0,6% кислорода, процесс резки нержавеющей стали протекает устойчиво. Дальнейшее увеличение содержания углерода и кислорода в порошке приводит к увеличению расхода порошка и ухудшению качества поверхности реза.

При резке нержавеющих сталей содержание кислорода в порошке не должно превышать 6%. Кислород присутствует в порошке в виде оксидов, которые замедляют процесс резки, так как требуют дополнительной теплоты для их нагрева.

Основными критериями при выборе грануляции железного порошка являются обеспечение его наилучшей транспортировки и регулирование расхода. Опытами установлено, что лучшие результаты при кислородно-флюсовой резке дает железный порошок с размерами частичек от 0,07 до 0,16 мм. Опытами также установлено, что лучшие результаты при резке нержавеющих хромоникелевых сталей достигаются при добавлении к железному порошку 10-15% алюминиевого порошка. Смесь железного и алюминиевого порошков дает жидкотекучий шлак, температура плавления второго не превышает 1300ºС. Для резки нержавеющих сталей применяется алюминиевый порошок марки АПВ.

Основная задача флюса при резке чугуна состоит в разбавлении флюса железом в области реза, снижении в сплаве содержания углерода, а также разжижения шлака, в котором содержится повышенное содержание кислорода. В состав флюсов для резки чугуна входят железный и алюминиевый порошок, кварцевый песок и феррофосфор.

Цветные металлы и сплавы подвергают только кислородно-флюсовой резке с применением флюсов.

Установки для кислородно-флюсовой резки состоят из двух основных частей: флюсопитателя

ирезака (ручного или машинного).

По конструкции флюсопитатели подразделяются на инжекторные, циклонные и с механической подачей.

Применяют три схемы установок для кислородно-флюсовой резки: с внешней подачей флюса, с однопроводной подачей флюса под высоким давлением и с механической подачей флюса.

По первой схеме подачи флюса флюс из бачка инжектируется кислородом и подается к резаку, укомплектованному специальной головкой. Газофлюсовая смесь, выходящая из отверстий специальной головки, засасывается струей режущего кислорода и в смеси с ним поступает в зону реза. При эксплуатации установки с внешней подачей флюса работают устойчиво и экономично (рис. 52, а).

Сварщик. Электрогазосварщик. Итоговая аттестация

75

Однопроводная схема подачи флюса под высоким давлением. В этом случае железный порошок из бачка флюсопитателя инжектируется непосредственно струей, режущего кислорода. Смесь флюса с кислородом по рукаву подводится к резаку через центральный канал мундштука и поступает к разрезаемому металлу (рис. 52, б).

По схеме с механической подачей флюса флюс, состоящий из смеси алюминиево-магниевого порошка, из бачка с помощью специального устройства подается к головке резака, где .увлекается струей режущего кислорода (рис. 52, в).

Рис. 52. Схема подачи флюса:

а - с внешней подачей; б - однопроводная под высоким давлением; в - с механической подачей; 1 - газофлюсовая смесь; 2 - флюс; 3 - флюсонесущий газ; 4 - кислородно-флюсовая смесь; 5 – режущий кислород

Вопрос 2. Баллоны для сжатых и сжиженных газов (типы, давление, окраска, надписи на баллонах, требования техники безопасности).

Для хранения и транспортировки сжатых, сжиженных и растворенных газов, находящихся

под давлением, применяют стальные баллоны. Баллоны имеют различную вместимость - от 0,4 до 55 дм3.

Баллоны представляют собой стальные цилиндрические сосуды, в горловине которых имеется конусное отверстие с резьбой, куда ввертывается запорный вентиль. Для каждого газа разработаны свои конструкции вентилей, что исключает установку кислородных вентилей на ацетиленовый баллон, и наоборот.

На горловину плотно насаживают кольцо с наружной резьбой для навертывания предохранительного колпака, который служит для предохранения вентиля баллонов от возможных ударов при транспортировке.

Баллоны для сжатых, сжиженных и растворенных газов изготовляют из бесшовных труб углеродистой и легированной стали. Для сжиженных газов при рабочем давлении не свыше 3 МПа допускается применение сварных баллонов. Требования к баллонам регламентируют правила Гостехнадзора России.

В зависимости от рода газа, находящегося в баллоне, баллоны окрашивают снаружи в условные цвета, а также соответствующей каждому газу краской наносят название газа.

Например, кислородные баллоны окрашивают в голубой цвет, а надпись делают черной краской, ацетиленовый - в белый и красной краской, водородные - в темно-зеленый и красной краской, пропан - в красный и белой краской.

Часть верхней сферической части баллона не окрашивают и выбивают на ней паспортные данные баллона: тип и заводской номер баллона, товарный знак завода-изготовителя, масса порожнего баллона, вместимость, рабочее давление и дату следующего испытания.

Баллоны периодически через каждые пять лет подвергают осмотру и испытанию. Кислородные баллоны. Для газовой сварки и резки кислород доставляют в стальных

кислородных баллонах.

Кислородный баллон (рис. 53, а) представляет собой стальной цельнотянутый цилиндрический сосуд 3, имеющий выпуклое днище 1, на которое напрессовывается башмак 2. Вверху баллон заканчивается горловиной 4.

Сварщик. Электрогазосварщик. Итоговая аттестация

76

Рис. 53. Баллоны:

а- кислородный; б - ацетиленовый

Вгорловине имеется конусное отверстие, куда ввертывается запорный вентиль 5. На горловину для защиты вентиля навертывается предохранительный колпак 6.

Наибольшее распространение при газовой сварке и резке получили баллоны вместимостью 40

дм3.

Эти баллоны имеют размеры:

наружный диаметр - 219 мм;

толщина стенки - 7 мм;

высота - 1 390 мм;

масса баллона без газа - 67 кг.

Они рассчитаны на рабочее давление 15 МПа, а испытательное - 22,5 МПа.

На сварочном посту кислородный баллон устанавливают в вертикальном положении и закрепляют цепью или хомутом. Для подготовки кислородного баллона к работе отвертывают колпак и заглушку штуцера, осматривают вентиль, чтобы установить, нет ли на нем жира или масла, осторожно открывают вентиль баллона и продувают его штуцер, после чего перекрывают вентиль, осматривают накидную гайку редуктора, присоединяют редуктор к вентилю баллона, устанавливают рабочее давление кислорода регулировочным винтом редуктора.

По окончании отбора газа из баллона необходимо следить, чтобы остаточное давление в нем было не меньше 0,05-0,1 МПа.

При обращении с кислородными баллонами необходимо строго соблюдать правила эксплуатации и техники безопасности, что обусловлено высокой химической активностью кислорода и высоким давлением.

При транспортировке баллонов к месту сварки необходимо твердо помнить, что запрещается перевозить кислородные баллоны вместе с баллонами горючих газов.

При замерзании вентиля кислородного баллона его надо отогревать ветошью, смоченной в горячей воде.

Причинами взрыва кислородных баллонов могут быть попадание на вентиль жира или масла, падение или удары баллонов, появление искры при слишком большом отборе газа (электризуется

Сварщик. Электрогазосварщик. Итоговая аттестация

77

горловина, баллона), нагрев баллона каким-либо источником тепла, в результате чего давление газа в баллоне станет выше допустимого.

Ацетиленовые баллоны. Питание постов газовой сварки и резки ацетиленом от ацетиленовых генераторов связано с рядом неудобств, поэтому в настоящее время большое распространение получило питание постов непосредственно от ацетиленовых баллонов.

Они имеют те же размеры, что и кислородный баллон (рис. 53, б).

Ацетиленовый баллон заполняют пористой массой из активированного древесного угля (290320 г на 1 дм3 вместимости баллона) или смесью угля, пемзы и инфузорной земли. Массу в баллоне пропитывают ацетоном (225-300 г на 1 дм3 вместимости баллона), в котором хорошо растворяется ацетилен.

Ацетилен, растворяясь в ацетоне и находясь в порах пористой массы, становится взрывобезопасным и его можно хранить в баллоне под давлением 2,5-3 МПа. Пористая масса должна иметь максимальную пористость, вести себя инертно по отношению к металлу баллона, ацетилену и ацетону, не давать осадка в процессе эксплуатации. В настоящее время в качестве пористой массы применяют активированный древесный дробленый уголь (ГОСТ 6217-74) с размером зерен от 1 до

3,5 мм.

Ацетон (химическая формула СН3СОСН3) является одним из лучших растворителей ацетилена, он пропитывает пористую массу и при наполнении баллонов ацетиленом растворяет его. Ацетилен, доставляемый потребителям в баллонах, называется растворенным ацетиленом.

Максимальное давление ацетилена в баллоне составляет 3 МПа. Давление ацетилена в полностью наполненном баллоне изменяется при изменении температуры окружающей среды (табл. 6).

 

 

 

 

 

 

 

 

 

 

Таблица 6

Температура, °С

-5

0

5

10

15

20

25

30

35

 

40

Давление, МПа

1,34

1,4

1,5

1,65

1,8

1,9

2,15

2,35

2,6

 

3,0

Давление наполненных баллонов не должно превышать при 20ºС 1,9 МПа.

При открывании вентиля баллона ацетилен выделяется из ацетона и в виде газа поступает через редуктор и шланг в горелку или резак. Ацетон остается в порах пористой массы и растворяет новые порции ацетилена при последующих наполнениях баллона газом.

Для уменьшения потерь ацетона во время работы ацетиленовые баллоны необходимо держать в вертикальном положении. При нормальном атмосферном давлении и 20°С в 1 кг (л) ацетона растворяется 28 кг (л) ацетилена. Растворимость ацетилена в ацетоне увеличивается примерно прямо пропорционально с увеличением давления и уменьшается с понижением температуры.

Для полного использования емкости баллона порожние ацетиленовые баллоны рекомендуется хранить в горизонтальном положении, так как это способствует равномерному распределению ацетона по всему объему, и с плотно закрытыми вентилями. При отборе ацетилена из баллона он уносит часть ацетона в виде паров. Это уменьшает количество ацетилена в баллоне при следующих наполнениях. Для уменьшения потерь ацетона из баллона ацетилен необходимо отбирать со скоростью не более 1700 дм3/ч.

Для определения количества ацетилена баллон взвешивают до и после наполнения газом и по разнице определяют количество находящегося в баллоне ацетилена (в кг). Масса пустого ацетиленового баллона складывается из массы самого баллона, пористой массы и ацетона. При отборе ацетилена из баллона вместе с газом расходуется 30-40 г ацетона на 1 м3 ацетилена. При отборе ацетилена из баллона необходимо следить за тем, чтобы в баллоне остаточное давление было не менее 0,05-0,1 МПа.

Использование ацетиленовых баллонов вместо ацетиленовых генераторов дает ряд

преимуществ, а именно:

компактность и простота обслуживания сварочной установки;

безопасность и улучшение условий работы;

повышение производительности труда газосварщиков.

Кроме того, растворенный ацетилен содержит меньшее количество посторонних примесей, чем ацетилен, получаемый из ацетиленовых генераторов.

Хранение и транспортировка баллонов.

Сварщик. Электрогазосварщик. Итоговая аттестация

78

1.Транспортировка баллонов разрешается только на рессорных транспортных средствах, а также на специальных ручных тележках или носилках.

2.При бесконтейнерной транспортировке баллонов должны соблюдаться следующие требования:

• на всех баллонах должны быть до отказа навернуты предохранительные колпаки;

• кислородные баллоны должны укладываться в деревянные гнезда (разрешается применять металлические подкладки с гнездами, оклеенными резиной или другими мягкими материалами);

• кислородные баллоны должны укладываться только поперек кузова машины так, чтобы предохранительные колпаки были в одной стороне; укладывать баллоны допускается в пределах высоты бортов;

• баллоны должны грузить рабочие, прошедшие специальный инструктаж.

3.Перевозка в вертикальном положении кислородных и ацетиленовых баллонов допускается только в специальных контейнерах.

4.Совместная транспортировка кислородных и ацетиленовых баллонов на всех видах транспорта запрещается, за исключением транспортировки двух баллонов на специальной тележке к рабочему месту.

5.В летнее время баллоны должны быть защищены от солнечных лучей брезентом или другими покрытиями.

6.Баллоны в пределах рабочего места разрешается перемещать кантовкой в наклонном положении.

7.На рабочих местах баллоны должны быть прочно закреплены в вертикальном положении.

3. Задача. Назовите и схематично изобразите способ сварки листовой конструкции длиной

1300 мм.

Сварочный шов относится к длинномерным, поэтому используют обратноступенчатый способ сварки. Сущность его состоит в том, что весь шов разбивают на участки длиной 100-350 мм с таким расчетом, чтобы каждый из них мог быть выполнен целым числом электродов (двумя, тремя и т. д.). При этом переход от участка к участку совмещается со сменой электрода. Каждый участок заваривается в направлении, обратном общему направлению сварки, а последний всегда заваривается «на выход».

В данном случае возможно организовать работу одновременно двух сварщиков.

Билет № 21

Вопрос 1. Сварка цветных металлов (медь и ее сплавы, алюминий, титан).

К техническим цветным металлам относятся медь и ее сплавы - латунь и бронза, алюминий и его сплавы, титан.

Особенность сварки цветных металлов обусловлена их свойствами:

1.Температура плавления невысокая, поэтому легко получить перегрев металла, что может привести к образованию пор и изменению состава сплава.

2.Способ окисляться с образованием тугоплавких оксидов затрудняет процесс сварки, снижает физико-механические свойства шва.

3.Повышенная способность расплавленного металла поглощать газы (кислород, азот, водород) приводит к пористости шва.

4.Большая теплоемкость и высокая теплопроводность вызывает необходимость повышенного теплового режима варки и предварительного нагрева изделия перед сваркой.

Сварщик. Электрогазосварщик. Итоговая аттестация

79

5.Относительно большие коэффициенты литейного расширения и литейная усадка приводят

квозникновению внутренних напряжений, деформаций, к образованию трещин в металле шва и околошовной зоны.

6.Резкое уменьшение механической прочности и возрастание хрупкости металлов при нагреве могут привести к непредвиденному разрушению изделия.

При сварке необходимо учитывать свойства каждого из металлов.

Сварка меди и ее сплавов. Особенность сварки меди заключается в следующем.

1.Медь обладает высокой теплопроводностью, большой жидкотекучестью, способностью окисляться в нагретом и особенно в расплавленном состоянии.

2.Сварка меди в значительной степени зависит от наличия в металле различных примесей: висмута, мышьяка, свинца, сурьмы.

Они практически не растворяются в меди, но образуют с ней легкоплавкие химические соединения, которые располагаются по границам зерен, ослабляя межатомные связи.

Чистая медь обладает наилучшей свариваемостью.

3.Повышенная жидкотекучесть меди затрудняет ее сварку в различных пространственных положениях, кроме нижнего.

4.Водород в присутствии кислорода оказывает отрицательное действие на свойства меди.

Расплавленная медь легко окисляется, образуя оксид меди Cu2О, который легко поглощает водород и оксид углерода (Cu2О+2Н=Н2О+2Си). При охлаждении в объеме металла выделяются пузырьки паров воды и углекислого газа, которые не растворяются в меди. Эти газы, расширяясь, создают большое внутреннее давление и приводят к образованию местных трещин. Это явление получило название водородной болезни меди.

Для предупреждения болезни следует снижать количество водорода в зоне сварки, прокаливать электроды, флюсы, использовать защитные газы.

5.При сварке меди покрытыми медными электродами без подогрева возможно возникновение горячих трещин.

6.При сварке с подогревом, создающим условие медленного охлаждения, водяной пар в большинстве случаев до затвердевания металла выходит наружу, но небольшая часть водяного пара остается между слоем сварочного шлака и поверхностью металла шва.

В результате этого поверхность металла шва после удаления шлака становится неровной. Этого можно избежать при очень медленном охлаждении шва.

Виды сварки меди:

• дуговая сварка угольным электродом (неплавящимся);

• дуговая сварка плавящимся электродом;

• автоматическая сварка под слоем флюса;

• ручная аргонодуговая сварка вольфрамовым электродом (сварка в защитных газах);

• газовая сварка.

Рассмотрим подробнее все эти виды сварки.

Дуговая сварка угольным электродом (неплавящимся). Применяется для малоответственных изделий. При толщине меди до 15 мм применяют угольные электроды, при больших толщинах - графитовые.

В том и другом случае в качестве присадочного материала используют прутки из меди марки

М1 и БрОФ6,5-0,15.

Для предохранения меди от окисления и улучшения процесса сварки применяют флюсы, которые наносят на разделку шва и на присадочные прутки. Флюс - прокаленная бура.

Присадочный материал не погружают в ванну, а держат под углом 30° к изделию на расстоянии 5-6 мм от поверхности ванны. Электрод держат под углом 75° к изделию.

Листы толщиной до 4 мм сваривают с отбортовкой кромок без присадочного металла. При толщине более 5 мм сваривают с разделкой кромок под углом 60-90°.

Сборка под сварку должна обеспечить минимальные зазоры (до 0,5 мм), чтобы предупредить протекание расплавленного металла шва.

Рекомендуется использовать подкладки из графита, асбеста, керамики. Сварка производится постоянным током прямой полярности.

Скорость сварки довольно большая и при возможности - за один проход.

Сварщик. Электрогазосварщик. Итоговая аттестация

80

Для электрода Ø 4...6 мм при толщине металла до 4 мм сила тока 140-320 А, для электрода Ø более 4 мм сила тока 350-500 А.

После сварки тонкие листы проковываются в холодном состоянии, а толстые (5-20 мм) - при температуре 200-400°. Подогрев до более высокой температуры не рекомендуется, так как медь становится хрупкой.

Дуговая сварка плавящимся электродом (металлическим). Подготовка кромок и обработка шва производится так же, как и при сварке угольным электродом.

При толщине металла 5-10 мм необходимы предварительный подогрев до температуры 250300°С и Х-образная разделка.

Металлические электроды изготавливают из меди марок Ml и М2, названные «Комсомолец100». Электроды Ø 3 мм применяются редко вследствие низкой механической прочности.

Электроды марки ЭТ Балтийского завода со стержнем из бронзы Бр.КМц3-1. Сварку ведут максимально короткой дугой.

Высокопроизводительные электроды АНЦ-1 и АНЦ-2 обеспечивают сварку без подогрева меди толщиной до 15мм.

Используют постоянный ток обратной полярности. Максимально короткая дуга, так как увеличение дуги ведет к разбрызгиванию металла и снижает механические свойства шва.

Колебательные движения отсутствуют. Сила тока определяется по формуле I=50dэ.

Ручная аргонодуговая сварка вольфрамовым электродом (сварка в защитных газах).

Выполняется угольным или вольфрамовым электродом на постоянном токе прямой полярности. Защитный газ - аргон, гелий.

Присадочная проволока марки Ml или Бр.КМц3-1.

При толщине металла более 4 мм сваривают с предварительным подогревом.

Автоматическая сварка под слоем флюса. Производится под флюсом марок ОСЦ-45, АН 348-

А, АН-20. Проволока диаметром 1,6-4 мм марки Ml или Бр.КМц3-1.

Газовая сварка. Требует повышенной мощности пламени. Для листов толщиной до 10 мм мощность пламени 150 дм3/ч на 1 мм толщины металла, а свыше 10 мм - 200 дм3/ч.

Для уменьшения отвода теплоты изделие закрывают листовым асбестом.

Пламя используют строго нормальное. Избыток ацетилена вызывает образование пор и трещин, а избыток кислорода ведет к окислению металла шва.

Нагрев и плавка меди производится восстановительной зоной.

Наклон горелки - 80-90°. Сварку ведут быстро, без перерывов, за один проход. Присадочная проволока - чистая медь или медь с раскислителем.

Диаметр проволоки от 1,5 до 8 мм, в зависимости от толщины металла.

В процессе сварки подогретый конец присадочного прута периодически обмакивают во флюс, так его переносят в сварочную ванну.

Для получения мелкозернистой структуры металл проковывают: толщиной до 5 мм - в холодном состоянии; при большой толщине - в горячем состоянии (200-300°). После производят отжиг при температуре до 550°С и охлаждают в воде. При этом шов получается более пластичным.

Сварка латуни. Латунь - это сплав меди с цинком. Сваривается теми же способами, что и

медь.

Основное затруднение при сварке латуни связано с кипением и интенсивным испарением цинка, пары которого в воздухе образуют ядовитые окислы.

При дуговой сварке применяют присадочные прутки из латуни ЛМц58-2 и флюс из молотого борного шлака или буры.

При автоматической сварке используют проволоку из меди Ml и флюс АН-348А или ОСЦ-

45.

При газовой сварке нормальным пламенем выделяются пары цинка, в результате чего шов получается пористым. Поэтому применяют пламя окислительное. Избыток кислорода окисляет часть цинка, и образующая на поверхности сварочной ванны оксидная пленка защищает расплавленный металл от дальнейшего окисления.

Сварка бронзы. Бронзой называется сплав меди с любым из металлов, кроме цинка. Сваривается так же, как и медь.

Сварка алюминия и его сплавов. Алюминий обладает малой плотностью, высокой тепло- и электропроводностью. Наибольшее применение получили сплавы алюминия с марганцем АМц.