Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ксе.docx
Скачиваний:
104
Добавлен:
27.05.2015
Размер:
706.1 Кб
Скачать

12 И 13 вопросы в 8 вопросе !

14 Вопрос.

1. Кризис в физике на рубеже веков

Вторая половина XIX в. характеризуется быстрым развитием всех сложившихся ранее и возникновением новых разделов физики. Однако особенно быстро развиваются теория теплоты и электродинамика. Теория теплоты развивается по двум направлениям. Во-первых, это развитие термодинамики, непосредственно связанной с теплотехникой. Во-вторых, развитие кинетической теории газов и теплоты, приведшее к возникновению нового раздела физики – статистической физики. Что касается электродинамики, то здесь важнейшими событиями явились: создание теории электромагнитного поля и возникновение нового раздела физики – теории электронов.

Величайшим достижение физики второй половины ХIХ века является создание теории электромагнитного поля. К середине XIX в. в тех отраслях физики, где изучались электрические и магнитные явления, был накоплен богатый эмпирический материал, сформулирован целый ряд важных закономерностей. Так, были открыты важнейшие законы: закон Кулона, закон Ампера, закон электромагнитной индукции, законы постоянного тока и др. Сложнее обстояло дело с теоретическими представлениями. Строившиеся физиками теоретические схемы основывались на представлениях о дальнодействии и корпускулярной природе электричества. Полного теоретического единства во взглядах физиков на электрические и магнитные явления не было. Однако к середине XIX в. потребность в качественном совершенствовании теоретического базиса учений о об электрических и магнитных процессах стала совершенно очевидной. Появляются отдельные попытки создания единой теории электрических и магнитных явлений. Одна из них оказалась успешной. Это была теория Максвелла, которая произвела подлинный революционный переворот в физике.

Максвелл и поставил перед собой задачу перевести идеи и взгляды Фарадея на строгий математический язык, или, говоря другими словами, интерпретировать известные законы электрических и магнитных явлений с точки зрения взглядов Фарадея. Будучи блестящим теоретиком и виртуозно владея математическим аппаратом, Дж. К. Максвелл справился с этой сложнейшей задачей. Результатом его трудов оказалось построение теории электромагнитного поля, которая была изложена в работе “Динамическая теория электромагнитного поля”, опубликованной в 1864 г.

Эта теория существенно изменяла представления о картине электрических и магнитных явлений. Она их объединяла в единое целое. Основные положения и выводы этой теории следующие.

Электромагнитное поле - реально и существует независимо от того, имеются проводники и магнитные полюса, обнаруживающие его, или нет. Максвелл определял это поле следующим образом: “... электромагнитное поле – это та часть пространства, которая содержит в себе, и окружает тела, находящиеся в электрическом или магнитном состоянии” (Максвелл Дж. К. Избранные сочинения по теории электромагнитного поля.М., 1952, с.253).

Изменение электрического поля ведет к появлению магнитного поля, и наоборот.

Векторы напряжений электрического и магнитного полей - перпендикулярны. Это и объясняло, почему электромагнитная волна исключительно поперечна.

Теория электромагнитного поля исходила из того, что передача энергии происходит с конечной скоростью. И таким образом она обосновывала принцип близкодействия.

Скорость передачи электромагнитных колебаний равна скорости света (с). Из этого следовала принципиальная тождественность электромагнитных и оптических явлений. Оказалось, что различия между ними только в частоте колебаний электромагнитного поля.

Экспериментальное подтверждение теории Максвелла в 1887 г. в опытах Г. Герца (1857-1894) произвело большое впечатление на физиков. И с этого времени теория Максвелла получает признание подавляющего большинства ученых.

Во второй половине ХIХ века предпринимаются попытки придать понятию абсолютного пространства и абсолютной системы отсчета новое научное содержание, очистив их от того метафизического смысла, который был придан им Ньютоном. В 1870 г. К. Нейман ввел понятие a -тела, как такого тела во Вселенной, которое является неподвижным и которое можно считать за начало абсолютной системы отсчета. Некоторые физики предлагали принять за a -тело такое тело, которое совпадает с центром тяжести всех тел во всей Вселенной, полагая, что этот центр тяжести можно считать находящимся в абсолютном покое.

Комплекс вопросов об абсолютном пространстве и абсолютном движении приобрел новый смысл в связи с развитием электронной теории и возникновением гипотезы об электромагнитной природе материи. Согласно электронной теории существует неподвижный всюду эфир и движущиеся в нем заряды. Неподвижный эфир заполняет все пространство и с ним можно связать систему отсчета, которая является инерциальной и, более того, выделенной из всех инерциальных систем отсчета. Движение относительно эфира можно рассматривать как абсолютное. Таким образом, на смену абсолютному пространству Ньютона пришел неподвижный эфир, который можно рассматривать как своего рода абсолютную и к тому же инерциальную систему отсчета.

Однако такая точка зрения уже с самого начала испытывала принципиальные затруднения. Об абсолютном движении тела, т. е. движении относительно эфира, можно говорить и представить, но определить это движение невозможно. Целый ряд опытов (Майкельсона и другие), поставленные с целью обнаружения такого движения, дали отрицательные результаты. Таким образом, хотя абсолютная система отсчета и была, как казалось, найдена, тем не менее она, как и абсолютное пространство Ньютона, оказалась ненаблюдаемой. Лоренц для объяснения результатов, полученных в этих опытах, вынужден был ввести специальные гипотезы, из которых следовало, что, несмотря на существование эфира, движение относительно него определить невозможно.

Однако вопреки таким мнениям все чаще и чаще высказывались соображения о том, что само понятие абсолютного прямолинейного и равномерного движения как движения относительно некоего абсолютного пространства лишено всякого научного содержания. Вместе с этим лишается содержания и понятие абсолютной системы отсчета и вводится более общее понятие инерциальной системы отсчета, не связанное с понятием абсолютного пространства. В результате понятие абсолютной системы координат становится бессодержательным. Иначе говоря, все системы, связанные со свободными телами, не находящимися под влиянием каких-либо других тел, равноправны.

В 1886 г. Л. Ланге, проводя исторический анализ развития механики, и утверждая бессодержательность понятия абсолютного пространства, предложил определение инерциальной системе координат: инерциальные системы - это системы, которые движутся прямолинейно и равномерно друг по отношению к другу. Переход от одной инерциальной системы к другой осуществляется в соответствии с преобразованиями Галилея.

Преобразования Галилея в течение столетий считались само собой разумеющимися и не нуждающимися ни в каком обосновании. Но время показало, что это далеко не так.

В конце XIX в. с резкой критикой ньютоновского представления об абсолютном пространстве выступил немецкий физик, позитивист Э. Мах. В основе представлений Маха как физика лежало убеждение в том, что “движение может быть равномерным относительно другого движения. Вопрос, равномерно ли движение само по себе, не имеет никакого смысла”. (Мах Э. Механика.Историко-критический очерк ее развития. Спб, 1909, с.187 В связи с этим Мах рассматривал системы Птолемея и Коперника как равноправные, считая последнюю более предпочтительной из-за простоты.) Это представление он переносит не только на скорость, но и на ускорение. В ньютоновской механике ускорение (в отличии от скорости) рассматривалось как абсолютная величина. Согласно классической механике, для того чтобы судить об ускорении, достаточно самого тела, испытывающего ускорения. Иначе говоря, ускорение – величина абсолютная и может рассматриваться относительно абсолютного пространства, а не относительно других тел. (Ньютон аргументировал это положение примером с вращающимся ведром, в котором налита вода.Этот опыт показывал, что относительное движение воды по отношению к ведру не вызывает центробежных сил и можно говорить о его вращении самом по себе, безотносительно к другим телам, т.е. остается лишь отношение к абсолютному пространству.) Этот вывод и оспаривал Мах.

С точки зрения Маха всякое движение относительно пространства не имеет никакого смысла. О движении, по Маху, можно говорить только по отношению к телам. Поэтому все величины, определяющие состояние движения, являются относительными. Значит, и ускорение – также чисто относительная величина. К тому же опыт никогда не может дать сведений об абсолютном пространстве. Он обвинил Ньютона в отступлении от принципа, согласно которому в теорию должны вводиться только те величины, которые непосредственно выводятся из опыта.

Однако, несмотря на идеалистический подход к проблеме относительности движения, в соображениях Маха были некоторые интересные идеи, которые, способствовали появлению общей теории относительности. Речь идет о т.н. “принципе Маха”. Мах выдвинул идею, согласно которой инерциальные силы следует рассматривать как действие общей массы Вселенной. Этот принцип впоследствии оказал значительное влияние на А. Эйнштейна. Рациональное зерно “принципа Маха” состояло в том, что свойства пространства-времени обусловлены гравитирующей материей. Но Мах не знал, в какой конкретной форме выражается эта обусловленность.

К новым идеям о природе пространства и времени подталкивали физиков и результаты математических исследований, открытие неевклидовых геометрий. Так, английский математик Клиффорд в 70-х годах высказал идею, что многие физические законы могут быть объяснены тем, что отдельные области пространства подчиняются неевклидовой геометрии. Более того, он считал, что кривизна пространства может изменяться со временем. Клиффорда принадлежит к числу немногочисленных в ХIХ веке провозвестников эйнштейновской теории гравитации.

Конец XIX в. в истории физики отмечен рядом принципиальных открытий, которые непосредственно привели к научной революции на рубеже ХIХ-ХХ веков. Важнейшие из них: открытие рентгеновских лучей, открытие электрона и установление зависимости его массы от скорости, открытие радиоактивности, фотоэффекта и его законов и др.

В 1895 г. Вильгельм Рентген (1845 – 1923) открыл необычные лучи, которые впоследствии получили название рентгеновских. Открытие этих лучей заинтересовало физиков и буквально сразу вызвало чрезвычайно широкую дискуссию о природе этих лучей. В течение короткого времени были выяснены необычные свойства этих лучей: способность проходить через светонепроницаемые тела, ионизировать газы и др. Но природа самих лучей оставалась неясной. Рентген высказал гипотезу о том, что лучи представляют собой продольные электромагнитные волны. Существовала гипотеза о корпускулярной природе этих лучей. Однако все попытки обнаружить волновые свойства лучей Рентгена, например наблюдать их дифракцию, долгое время были безуспешными. (Только в 1925 г. немецкому физику Лауэ удалось обнаружить дифракцию рентгеновских лучей от кристаллической решетки )

Открытие рентгеновских лучей способствовало исследованиям электропроводности газов и изучению катодных лучей.

Важнейшим открытием в физике конца XIX в. было открытие радиоактивности, которое помимо своего общего принципиального значения сыграло важную роль в развитии представлений об электроне. Все началось в 1896 г., когда Анри Беккерель, исследуя загадочное почернение фотографической пластинки, оставшейся в ящике письменного стола рядом с кристаллами сульфата урана, случайно открыл радиоактивность. Систематическое исследование радиоактивного излучения было предпринято Эрнестом Резерфордом; он установил, что радиоактивные атомы испускают частицы двух различных типов, которые назвал альфа и бета. Тяжелые положительно заряженные альфа-частицы, как выяснилось, представляли собой быстро движущиеся ядра гелия. Бета-частицы оказались летящими с большой скоростью электронами.

Мария Склодовская-Кюри (1867 – 1934), занявшись исследованием нового явления, пришла к выводу, что в урановых рудах присутствуют вещества, обладающие также свойством излучения, названного ею радиоактивным. В результате упорного труда Марии и Пьеру Кюри (1859 – 1906), удалось выделить из урановых руд новый элемент (1898), который обладал радиоактивностью гораздо большей, чем уран. Этот элемент был назван радием.

Исследованием вновь открытых явлений занялись многие физики. Нужно было определить природу радиоактивных лучей, а также какое влияние на радиоактивность оказывают физические условия, в которых находятся радиоактивные вещества, и т. д. Все эти вопросы начали проясняться в результате последующих исследований. В связи с изучением радиоактивных явлений перед физиками встало два главных вопроса.

Во-первых, это вопрос о природе радиоактивного излучения. Уже через короткое время после открытия Беккереля стало ясно, что радиоактивное излучение неоднородно и содержит три компонента, которые получили название a -, b - и g -лучей. При этом оказалось, что a - и b -лучи являются потоками соответственно положительно и отрицательно заряженных частиц. Природа g - излучения была выяснена позже, хотя довольно рано высказывалось мнение, что оно представляет собой электромагнитное излучение.

Второй вопрос, возникший в связи с исследованием радиоактивного излучения, был более трудным и заключался в определении источника энергии, которую несут эти лучи. Что это за энергия, находящаяся внутри атома, которая освобождается при его распаде и выделяется вместе с излучением, был неясен, как и вообще вопрос о механизме самого радиоактивного распада, а первые теории, возникшие для решения этого вопроса, нельзя было считать убедительными.

К великим открытиям второй половины ХIХ века должны быть отнесено создание периодической системы химических элементов Д.И. Менделеевым, экспериментальное обнаружение электромагнитных волн Г. Герцем, открытие явления фотоэффекта, тщательно проанализированное А.Г. Столетовым. В этом ряду и еще одно очень важное открытие – обнаружение того, что отношение заряда к массе для электрона не является постоянной величиной, а зависит от скорости.

Открытие зависимости массы электрона от скорости и объяснение этого факта наличием электромагнитной массы вызвали вопрос, обладает ли вообще электрон обычной массой, массой в смысле классической механики, массой в смысле Ньютона. Этот вопрос не мог быть решен.

Некоторым ученым начинает казаться что само развитие науки приводит к отказу от признания существования материи и справедливости общих важнейших физических законов. Открытие радиоактивности также приводит таких ученых в растерянность.

В таких условиях в физике складывается атмосфера разочарования в возможностях научного познания истины, начинается “брожение умов”, распространяются идеи релятивизма и агностицизма. Ситуацию, сложившуюся в физической науке на рубеже XIX – ХХ вв., Пуанкаре назвал “кризисом физики”. (См.: Пуанкаре А. О науке.М., 1990) “Признаки серьезного кризиса” физики он в первую очередь связывал с возможностью отказа от фундаментальных принципов физического познания.“Перед нами “руины” старых принципов, всеобщий “разгром” таких принципов”, – восклицал он. “Принцип Лавуазье” (закон сохранения массы), “принцип Ньютона” (принцип равенства действия и противодействия, или закон сохранения количества движения), “принцип Майера” (закон сохранения энергии) – все эти фундаментальные принципы, которые долгое время считались незыблемыми, теперь подвергают сомнению.

На рубеже ХIX – ХХ вв. многие ученые, пытаясь осмыслить состояние физики, приходили к выводу о том, что само развитие науки показывает ее неспособность дать объективное представление о природе, что истины науки носят чисто относительный характер, не содержат в себе ничего абсолютного, что ни о какой объективной реальности, существующей независимо от сознания людей, не может быть и речи.

На самом же деле проблема состояла в том, что концу ХIХ века методологические установки классической, ньютоновской физики уже исчерпали себя и необходимо было изменять теоретико-методологический каркас естественнонаучного познания. Возникла необходимость расширить и углубить понимание и самой природы и процесса ее познания наукой. Не существует никакой абсолютной субстанции бытия, с познанием которой завершается прогресс науки. Как бесконечна, многообразна и неисчерпаема сама природа, так бесконечен, многообразен и неисчерпаем процесс ее познания естественными науками. Электрон так же неисчерпаем, как и атом. Каждая естественнонаучная картина мира является относительной и преходящей. Процесс научного познания необходимо связан с периодической крутой ломкой старых понятий, теорий, картин мира, методологических установок, способов познания. А “физический идеализм” является просто следствием непонимания некоторыми физиками необходимости периодической смены философско-методологических оснований естествознания. (В России анализ революции в естествознании на рубеже ХIХ-ХХ веков был осуществлен В.И. Лениным в работе “Материализм и эмпириокритицизм”, вышедшей в свет в 1909 г.)

К концу ХIХ века механистическая, метафизическая (т.е. предметоцентрическая) методология себя исчерпала. Естествознание стремилось к новой диалектической (т.е. системоцентрической) методологии. Поиски этой новой методологии были не простыми, были сопряжены с борьбой мнений, школ, взглядов, философской и мировоззренческой полемикой. Поэтому и возникла атмосфера разочарования в возможностях познания природы, поползновения в идеализм. В конце концов, в первой четверти ХХ века естествознание все-таки нашло свои новые философско-методологические ориентиры, разрешив кризис рубежа веков.

Билет 15. Сущность и выводы специальной теории относительности.

Специальная теория относительности (СТО; также частная теория относительности) — теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света. В рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей. Обобщение СТО для гравитационных полей называется общей теорией относительности.

Описываемые специальной теорией относительности отклонения в протекании физических процессов от предсказаний классической механики называют релятивистскими эффектами, а скорости, при которых такие эффекты становятся существенными, — релятивистскими скоростями.

Создание СТО.

Предпосылкой к созданию теории относительности явилось развитие в XIX веке электродинамики [1]. Результатом обобщения и теоретического осмысления экспериментальных фактов и закономерностей в областях электричества и магнетизма стали уравнения Максвелла, описывающие эволюцию электромагнитного поля и его взаимодействие с зарядами и токами. В электродинамике Максвелла скорость распространения электромагнитных волн в вакууме не зависит от скоростей движения как источника этих волн, так и наблюдателя, и равна скорости света. Таким образом, уравнения Максвелла оказались неинвариантными относительно преобразований Галилея, что противоречило классической механике.

Специальная теория относительности была разработана в начале XX века усилиями Г. А. Лоренца, А. Пуанкаре, А. Эйнштейна и других учёных [2] (см. ниже исторический очерк). Экспериментальной основой для создания СТО послужил опыт Майкельсона. Его результаты оказались неожиданными для классической физики своего времени: независимость скорости света от направления (изотропность) и орбитального движения Земли вокруг Солнца. Попытка интерпретировать этот результат в начале XX века вылилась в пересмотр классических представлений, и привела к созданию специальной теории относительности.

При движении с околосветовыми скоростями видоизменяются законы динамики. Второй закон Ньютона, связывающий силу и ускорение, должен быть модифицирован при скоростях тел, близких к скорости света. Кроме этого, выражение для импульса и кинетической энергии тела имеет более сложную зависимость от скорости, чем в нерелятивистском случае.

Специальная теория относительности получила многочисленные подтверждения на опыте и является верной теорией в своей области применимости[3] (см. Экспериментальные основания СТО). По меткому замечанию Л. Пэйджа, «в наш век электричества вращающийся якорь каждого генератора и каждого электромотора неустанно провозглашает справедливость теории относительности — нужно лишь уметь слушать»

Основные понятия СТО и постулаты.

Система отсчёта представляет собой некоторое материальное тело, выбираемое в качестве начала этой системы, способ определения положения объектов относительно начала системы отсчёта и способ измерения времени. Обычно различают системы отсчёта и системы координат. Добавление процедуры измерения времени к системе координат «превращает» её в систему отсчёта.

Инерциальная система отсчёта (ИСО) — это такая система, относительно которой объект, не подверженный внешним воздействиям, движется равномерно и прямолинейно. Постулируется, что любая система отсчёта, движущаяся относительно данной инерциальной системы равномерно и прямолинейно, также является ИСО.

Событием называется любой физический процесс, который может быть локализован в пространстве, и имеющий при этом очень малую длительность. Другими словами, событие полностью характеризуется координатами (x, y, z) и моментом времени t. Примерами событий являются: вспышка света, положение материальной точки в данный момент времени и т.п.

Принцип относительности

Ключевым для аксиоматики специальной теории относительности является принцип относительности, утверждающий равноправие инерциальных систем отсчёта. Это означает, что все физические процессы в инерциальных системах отсчёта описываются одинаковым образом. Совместно с остальными постулатами, перечисленными выше, принципа относительности достаточно, чтобы получить явный вид преобразований координат и времени между ИСО.

Исторически важную роль при построении СТО сыграл второй постулат Эйнштейна, утверждающий, что скорость света не зависит от скорости движения источника и одинакова во всех инерциальных системах отсчёта. Именно при помощи этого постулата и принципа относительности Альберт Эйнштейн в 1905 г. получил преобразования Лоренца с фундаментальной константой , имеющей смысл скорости света. С точки зрения описанного выше аксиоматического построения СТО второй постулат Эйнштейна оказывается теоремой теории и непосредственно следует из преобразований Лоренца. Тем не менее, в силу его исторической важности, такой вывод преобразований Лоренца широко используется в учебной литературе.

Необходимо отметить, что световые сигналы, вообще говоря, не требуются при обосновании СТО. Хотя неинвариантность уравнений Максвелла относительно преобразований Галилея привела к построению СТО, последняя имеет более общий характер и применима ко всем видам взаимодействий и физических процессов. Фундаментальная константа , возникающая в преобразованиях Лоренца, имеет смысл предельной скорости движения материальных тел. Численно она совпадает со скоростью света, однако этот факт связан с безмассовостью электромагнитных полей. Даже если бы фотон имел отличную от нуля массу, преобразования Лоренца от этого бы не изменились. Поэтому имеет смысл различать фундаментальную скорость и скорость света [16]. Первая константа отражает общие свойства пространства и времени, тогда как вторая связана со свойствами конкретного взаимодействия. Чтобы измерить фундаментальную скорость, нет необходимости проводить электродинамические эксперименты. Достаточно, воспользовавшись, например, релятивистским правилом сложения скоростей по значениям скорости некоторого объекта относительно двух ИСО, получить значение фундаментальной скорости.

Билет 16. Сущность и выводы общей теории относительности. (ТУТ МАЛО, НО Я НЕ ЗНАЮ ДЕВЧОНКИ, ЧТО ЕЩЕ НАДО, А ЧТО НЕТ!)

О́бщаятео́рияотноси́тельности (ОТО; нем. allgemeineRelativitätstheorie) — геометрическая теория тяготения, развивающая специальную теорию относительности (СТО), опубликованная Альбертом Эйнштейном в 1915—1916 годах.[1][2] В рамках общей теории относительности, как и в других метрических теориях, постулируется, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей, находящихся в пространстве-времени, а деформацией самого́ пространства-времени, которая связана, в частности, с присутствием массы-энергии. Общая теория относительности отличается от других метрических теорий тяготения использованием уравнений Эйнштейна для связи кривизны пространства-времени с присутствующей в нём материей.

ОТО в настоящее время — самая успешная теория гравитации, хорошо подтверждённая наблюдениями. Первый успех общей теории относительности состоял в объяснении аномальной прецессии перигелия Меркурия. Затем, в 1919 году, Артур Эддингтон сообщил о наблюдении отклонения света вблизи Солнца в момент полного затмения, что качественно и количественно подтвердило предсказания общей теории относительности. С тех пор многие другие наблюдения и эксперименты подтвердили значительное количество предсказаний теории, включая гравитационное замедление времени, гравитационное красное смещение, задержку сигнала в гравитационном поле и, пока лишь косвенно, гравитационное излучение. Кроме того, многочисленные наблюдения интерпретируются как подтверждения одного из самых таинственных и экзотических предсказаний общей теории относительности — существования чёрных дыр.

Несмотря на ошеломляющий успех общей теории относительности, в научном сообществе существует дискомфорт, связанный, во-первых, с тем, что её не удаётся переформулировать как классический предел квантовой теории, а во-вторых, с тем, что сама теория указывает границы своей применимости, так как предсказывает появление неустранимых физических расходимостей при рассмотрении чёрных дыр и вообще сингулярностей пространства-времени. Для решения этих проблем был предложен ряд альтернативных теорий, некоторые из которых также являются квантовыми. Современные экспериментальные данные, однако, указывают, что любого типа отклонения от ОТО должны быть очень малыми, если они вообще существуют.

Основные следствия ОТО

Орбита по Ньютону (красная) и по Эйнштейну (голубые) одной планеты, вращающейся вокруг звезды

Согласно принципу соответствия, в слабых гравитационных полях предсказания общей теории относительности совпадают с результатами применения ньютоновского закона всемирного тяготения с небольшими поправками, которые растут по мере увеличения напряжённости поля.

Первыми предсказанными и проверенными экспериментальными следствиями общей теории относительности стали три классических эффекта, перечисленных ниже в хронологическом порядке их первой проверки:

Дополнительный сдвиг перигелия орбиты Меркурия по сравнению с предсказаниями механики Ньютона.

Отклонение светового луча в гравитационном поле Солнца.

Гравитационное красное смещение, или замедление времени в гравитационном поле.

Существует ряд других эффектов, поддающихся экспериментальной проверке. Среди них можно упомянуть отклонение и запаздывание (эффект Шапиро) электромагнитных волн в гравитационном поле Солнца и Юпитера, эффект Лензе — Тирринга (прецессия гироскопа вблизи вращающегося тела), астрофизические доказательства существования чёрных дыр, доказательства излучения гравитационных волн тесными системами двойных звёзд и расширение Вселенной[4].

До сих пор надёжных экспериментальных свидетельств, опровергающих ОТО, не обнаружено. Отклонения измеренных величин эффектов от предсказываемых ОТО не превышают 0,01 % (для указанных выше трёх классических явлений)[4]. Несмотря на это, в связи с различными причинами теоретиками было разработано не менее 30 альтернативных теорий гравитации, причём некоторые из них позволяют получить сколь угодно близкие к ОТО результаты при соответствующих значениях входящих в теорию параметров.

Билет 17. Пространство и время в неклассическом и постнеклассическом естествознании.

Теория относительности А. Эйнштейна сыграла революционную роль в естествознании конца ХIХ – начала ХХ в. Она установила факт диалектической взаимосвязи пространства, времени, материи и движения. Сам Эйнштейн суть теории относительности выразил так: «Раньше полагали, что если бы во Вселенной исчезла бы вся материя, то пространство и время сохранились бы, теория относительности утверждает, что вместе с материей исчезли бы пространство и время».

В 1905 г. А. Эйнштейн (1879–1955) ввел в научный оборот понятие «кванта света» и вскоре опубликовал статью «Об электродинамике движущихся тел», где на пяти страницах изложил «специальную теорию относительности» (СТО). В СТО Эйнштейн показал, что пространство и время не абсолютны и неизменны, а могут представать по-разному в различных системах отсчета.

Одно из основных положений СТО – полная равноправность всех инерциальных систем отсчета – делает бессодержательным понятия абсолютного пространства и абсолютного времени ньютоновской физики. На основе этих представлений Эйнштейн вывел новые законы движения и дал теорию оптических явлений в движущихся телах.

Эйнштейн вывел знаменитое соотношение E = mc² (c – скорость света в вакууме, m – масса тела, пропорциональная его энергии E).

Согласно СТО ход времени зависит от движения системы, а интервал времени и пространства изменяется таким образом, что скорость света в данной системе не меняется в зависимости от её движения.

Теория относительности – это физическая теория, рассматривающая пространственно-временные свойства физических процессов. Общая теория относительности называется ещё теорией тяготения. Она изучает свойства пространства–времени при наличии полей тяготения (гравитационных полей). Специальная теория относительности (СТО) придала физический смысл числу измерений пространства. Общая теория относительности (ОТО) придала физический смысл геометрической аксиоматике, определила различие между Эвклидовой и неэвклидовой геометриями. Эйнштейн рассматривал ОТО как осуществление программы, вытекающей из теории поля. Она объединяет силы инерции, тяготение и метрику пространства в единое свойство, которое выражает наличие поля, воздействующего на тела и зависящего от тел.

В «Основах общей теории относительности» (1916) Эйнштейн рассматривал уже не инерциальные системы, а системы, движущиеся с ускорением. Выяснилось, что не только инерциальные, но и любые системы отсчета равноценны, а инерционная и гравитационная массы эквивалентны. Тяготение неразрывно связано с пространством–временем, и правомерно говорить о вещественно-пространственно-временном континууме. Влияние вещества на свойства такого континуума удалось обнаружить уже в 1919 г., наблюдая (во время солнечного затмения) искривление луча света в поле тяготения. Другим надежным доказательством ОТО считается объяснение ею отклонения орбиты Меркурия от классического.

Общая теория относительности обобщает классическую механику и распространяет ее принципы на области движения тел со скоростями, приближающимися к скорости света. В ее рамках дается более точное, чем в рамках классической механики, описание объек¬тивных процессов реальности.

Эйнштейн обобщил принцип относительности Галилея на все явления природы. Принцип относительности Эйнштейна: «Никакими физическими опытами, произведенными в инерциальной системе отсчета, невозможно определить, движется ли эта система равномерно и прямолинейно или находится в покое».

Таким образом, в своём научном творчестве А. Эйнштейн достиг следующих результатов:

1) создал современную научную картину мира и современный стиль естественнонаучного мышления;

2) разработал физическую теорию пространства и времени, основанную на идеях классической философии;

3) пересмотрел казавшуюся незыблемой механистическую картину мира;

4) пытался построить единую теорию поля, которая свела бы в одно целое гравитацию и электромагнетизм.

Помимо релятивистской парадигмы, огромную роль в становлении неклассической науки первой половины ХХ в. сыграла квантовая механика. Она впервые сформулировала чрезвычайно важный диалектический принцип корпускулярно-волнового дуализма, который выявлял новое качество микрообъектов — наличие у них как корпускулярных (частицы), так и световых (волна) свойств.

В классической физике вещество и поле рассматриваются как две качественно различные формы материи. Напротив, в микромире объ¬екты демонстрируют как корпускулярные, так и волновые свойства.

Разрабатывая термодинамическую теорию теплового излучения, немецкий физик Макс Планк (1858–1947) ввел для его объяснения уни¬версальную величину («постоянная Планка») — квант действия. Доказывалось, что распространение светового излучения и его поглощение происходят дискретно, т.е. определенными порциями – квантами. Тем самым были заложены основы квантовой теории, устанавливающей момент прерывности (дискретности) в энергетических процессах. Более того, понятие кванта стало одной из предпосылок современных трактовок свойств атома.

Датский физик Нильс Бор (1885–1962), применив принцип квантования при разработке теории строения атома, выдвинул гипотезу, объясняющую устойчивость атома и заключающую в себе два постулата: во-первых, в каждом атоме существует несколько стационарных орбит, вращаясь по которым, электрон может не излучать энер¬гии; во-вторых, при переходе электрона из одного стационарного состояния в другое атом излучает или поглощает квант энергии. Эта теория оказалась одной из последних попыток описывать процессы микромира на основе законов классической механики.

Исследования французского физика Луи де Бройля (1892–1987), ус¬тановившие, что объекты микромира обладают как корпускулярны¬ми, так и волновыми свойствами, получили в дальнейшем и экспе¬риментальное подтверждение. В результате в квантовой физике был сформулирован принцип дополнительности. В обобщенном виде сущность принципа дополнительности заключается в том, что для воспроизведения целостности явления на определенном этапе его познания необходимо применение взаимо¬исключающих и взаимоограничивающих друг друга классов понятий и представлений. Именно их совокупность обеспечивает относитель¬ную полноту информации. Речь идет о принципиальной необходи¬мости подключения различных теоретических методов при описании познавательного взаимодействия между субъектом и объектом позна¬ния, о невозможности достигнуть уровня абсолютного (безотноси¬тельного) истинного и завершенного знания.

Принцип дополнительности предложен Н. Бором (в 1927 г.) для разрешения теоретических трудностей, возникших в процессе интерпретации физической природы микрочастиц. Микрочастицы обнаружили как волновые, так и корпускулярные свойства. Данное противоречие преодолевается в квантовой механике использованием в волновых и корпускулярных представлений, т.е. на основе корпускулярно-волнового дуализма.

Это означает, что оба аспекта электрона – волновой и корпускулярный – взаимно дополняют друг друга. Лишь совместное применение обоих представлений способствует полному описанию сущности света и микрочастиц. Дополнительность – выражение их двойственности.

Пространство и время в постнеклассическом естествознании.

Согласно экспериментальным данным, пространство (обычное) нашей Вселенной на больших расстояниях имеет нулевую либо очень маленькую положительную кривизну. Это объясняют быстрым расширением Вселенной в начальный момент, в результате чего элементы кривизны пространства выровнялись (см. Инфляционная модель Вселенной).

В нашей Вселенной пространство имеет три измерения (согласно некоторым теориям, имеются дополнительные измерения на микрорасстояниях), а время — одно.

Время движется только в одном направлении («стрела времени»), хотя физические формулы симметричны относительно направленности времени[10], за исключением термодинамики. Одно из объяснений однонаправленности времени основывается на втором законе термодинамики, согласно которому энтропия может только возрастать и поэтому определяет направленность времени. Рост энтропии объясняется вероятностными причинами: на уровне взаимодействия элементарных частиц все физические процессы обратимы, но вероятность цепочки событий в «прямом» и «обратном» направлении может быть разной. Благодаря этой вероятностной разнице мы можем судить о событиях прошлого с большей уверенностью и достоверностью, чем о событиях будущего. Согласно другой гипотезе, редукция волновой функции необратима и потому определяет направленность времени (однако многие физики сомневаются, что редукция является реальным физическим процессом). Некоторые учёные пытаются примирить оба подхода в рамках теории декогеренции: при декогеренции информация о большинстве предшествующих квантовых состояниях теряется, следовательно, этот процесс необратим во времени.

Билет 18. Модель «Большого взрыва» и расширяющейся Вселенной.

Большо́й взрыв (англ. BigBang) — космологическая модель, описывающая раннее развитие Вселенной, а именно — начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии.

Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление о холодной начальной Вселенной вблизи Большого взрыва. Именно сочетание теории Большого взрыва с теорией горячей Вселенной, подкрепляемое существованием реликтового излучения, и рассматривается далее.

По современным представлениям, наблюдаемая нами сейчас Вселенная возникла 13,7 ± 0,13 млрд лет назад[2][3][4] из некоторого начального «сингулярного» состояния и с тех пор непрерывно расширяется и охлаждается. Согласно известным ограничениям по применимости современных физических теорий, наиболее ранним моментом, допускающим описание, считается момент Планковской эпохи с температурой примерно 1032 К (Планковская температура) и плотностью около 1093 г/см³ (Планковская плотность). Ранняя Вселенная представляла собой высокооднородную и изотропную среду с необычайно высокой плотностью энергии, температурой и давлением. В результате расширения и охлаждения во Вселенной произошли фазовые переходы, аналогичные конденсации жидкости из газа, но применительно к элементарным частицам.

Приблизительно через 10−35 секунд после наступления Планковской эпохи (Планковское время — 10−43 секунд после Большого взрыва, в это время гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий) фазовый переход вызвал экспоненциальное расширение Вселенной. Данный период получил название Космической инфляции. После окончания этого периода строительный материал Вселенной представлял собой кварк-глюонную плазму. По прошествии времени температура упала до значений, при которых стал возможен следующий фазовый переход, называемый бариогенезисом. На этом этапе кварки и глюоны объединились в барионы, такие как протоны и нейтроны. При этом одновременно происходило асимметричное образование как материи, которая превалировала, так и антиматерии, которые взаимно аннигилировали, превращаясь в излучение.

Дальнейшее падение температуры привело к следующему фазовому переходу — образованию физических сил и элементарных частиц в их современной форме. После чего наступила эпоха нуклеосинтеза, при которой протоны, объединяясь с нейтронами, образовали ядра дейтерия, гелия-4 и ещё нескольких лёгких изотопов. После дальнейшего падения температуры и расширения Вселенной наступил следующий переходный момент, при котором гравитация стала доминирующей силой. Через 380 тысяч лет после Большого взрыва температура снизилась настолько, что стало возможным существование атомов водорода (до этого процессы ионизации и рекомбинации протонов с электронами находились в равновесии).

После эры рекомбинации материя стала прозрачной для излучения, которое, свободно распространяясь в пространстве, дошло до нас в виде реликтового излучения.

Экстраполяция наблюдаемого расширения Вселенной назад во времени приводит, при использовании общей теории относительности и некоторых других альтернативных теорий гравитации, к бесконечной плотности и температуре в конечный момент времени в прошлом. Размеры Вселенной тогда равнялись нулю — она была сжата в точку. Это состояние называется космологической сингулярностью (многие учёные полушутя-полусерьёзно называют космологическую сингулярность «рождением» Вселенной).

Невозможность избежать сингулярности в космологических моделях общей теории относительности была доказана, в числе прочих теорем о сингулярностях, Р. Пенроузом и С. Хокингом в конце 1960-х годов.

Теория Большого взрыва не даёт никакой возможности говорить о чём-либо, что предшествовало этому моменту (потому что наша математическая модель пространства-времени в момент Большого взрыва теряет применимость, при этом теория вовсе не отрицает возможность существования чего-либо до Большого взрыва). Это сигнализирует о недостаточности описания Вселенной классической общей теорией относительности.

Насколько близко к сингулярности можно экстраполировать известную физику, является предметом научных дебатов, но практически общепринято, что допланковскую эпоху рассматривать известными методами нельзя. Проблема существования сингулярности в данной теории является одним из стимулов построения квантовой и других альтернативных теорий гравитации, которые стараются разрешить эту проблему.

Дальнейшая эволюция Вселенной

Согласно теории Большого взрыва, дальнейшая эволюция зависит от экспериментально измеримого параметра — средней плотности вещества в современной Вселенной. Если плотность не превосходит некоторого (известного из теории) критического значения, Вселенная будет расширяться вечно, если же плотность больше критической, то процесс расширения когда-нибудь остановится и начнётся обратная фаза сжатия, возвращающая к исходному сингулярному состоянию. Современные экспериментальные данные относительно величины средней плотности ещё недостаточно надёжны, чтобы сделать однозначный выбор между двумя вариантами будущего Вселенной.

Есть ряд вопросов, на которые теория Большого взрыва ответить пока не может, однако основные её положения обоснованы надёжными экспериментальными данными, а современный уровень теоретической физики позволяет вполне достоверно описать эволюцию такой системы во времени, за исключением самого начального этапа — порядка сотой доли секунды от «начала мира». Для теории важно, что эта неопределённость на начальном этапе фактически оказывается несущественной, поскольку образующееся после прохождения данного этапа состояние Вселенной и его последующую эволюцию можно описать вполне достоверно.

Билет 19. Механизм образования и эволюции звезд.

Рассмотрим теперь механизм зарождения и развития звезд, а также в связи с этим классификацию звезд и методы их наблюдения. Мы уже отмечали, что согласно гамовской модели БВ все элементы Вселенной образовались в результате термоядерных реакций. Остановимся на этом подробнее. При конденсации звезды из облака межзвездных газа и пыли высвобождается гравитационная потенциальная энергия. Часть этой энергии расходуется на излучение, а остальная часть преобразуется в кинетическую энергию конденсирующих атомов, и, таким образом, повышается температура звезды. При температурах Т ~ 107 К и плотности ~ 100 г/см3 начинаются термоядерные реакции, которые могут идти в зависимости от первоначального состава межзвездной пыли и, следовательно, звезд по двум схемам или цепочкам. Большинство звезд состоит в основном из водорода (60-90% по массе), гелия (10-40%) и тяжелых элементов (0,1-3%). Звезды, в состав которых входят кроме водорода и гелия тяжелые элементы, выброшенные при вспышках так называемых новых или взрывах сверхновых звезд, называются звездами населения I.

Новыми звезды называются потому, что в древности предполагалось, что это действительно новые звезды и до взрыва их нельзя было видеть. На самом деле в некоторых звездах возникают неустойчивости, происходит извержение вещества в пространство и светимость ее резко увеличивается. Частота извержений изменяется от нескольких месяцев до лет. У остальных звезд извержения бывают примерно раз в 1000 лет. Сверхновые звезды фактически связаны со взрывом массивной звезды, что бывает один раз в несколько столетий. За 10 последних веков обнаружено 7 сверхновых звезд. Интенсивность излучения сверхновых звезд в 104 раз больше, чем у новых. Наше родимое Солнце с 74% Н, 24% Не и 2% тяжелых элементов есть обычная звезда населения I. Звезды населения II образовались из первичного водорода и гелия и в основном содержат гораздо меньше остаточного материала других звезд. Они содержат много водорода, мало гелия и очень мало тяжелых элементов.

Рассмотрим теперь процесс эволюции звезд. Итак, звезды конденсируются из межзвездной пыли, возникают термоядерные реакции, звезды разогреваются, сжигают свое ядерное горючее и гибнут, взрываясь в виде сверхновых, или просто угасают, превращаясь в куски ядерного пепла. О взаимоотношениях гравитационного и радиационного давлений мы уже говорили. Если эти давления уравновешиваются, то звезда стабилизируется и приобретает характерные для нее размеры и светимость. Астрономы установили, что для того, чтобы проследить за эволюцией звезд, достаточно знать две величины, которые сравнительно легко измерить: собственную светимость и цвет, характеризующий температуру поверхности. Поэтому можно построить в этих координатах зависимость светимости от цвета, и поскольку каждая звезда в любой период жизни имеет определенную светимость и определенный цвет, то она будет точкой на этой диаграмме. Так как звезды разные по времени своего развития, то можно сказать, что в течение жизни звезды точка, ее представляющая, движется по этой диаграмме, описывая некую кривую. Таким образом можно проследить процесс жизни и угасания звезды.

Если же говорить о конкретной динамике поведения звезды, то она зависит только от двух факторов: массы вещества, из которого она конденсировалась, и состава этого вещества. В начальный период жизни звезды играет роль только ее масса. Если сравнивать динамику звезд, химический состав которых подобен составу Солнца, т.е. звезд населения I, то окажется, что на протяжении большей части своей истории эти звезды занимают положения вблизи так называемой главной последовательности (рис. ). Начальное положение звезды зависит от ее массы: более массивные звезды оказываются более горячими и яркими, менее массивные звезды холодные и тусклые. Так как большую часть своей жизни звезда стабильна, диаграмма цвет - светимость для любой группы звезд представляет собой распределение точек вдоль главной последовательности. Однако на этой диаграмме будут наблюдаться и отклонения от главной последовательности. Это связано с начальным составом и массой звезды и ее переходом из одного типа к другому. Солнце перемещается вдоль главной последовательности уже 4,5 ×109 лет и будет продолжать это движение дальше 5 ×109 лет, а затем перейдет к последним этапам своей эволюции. Более массивные звезды проходят этот путь быстрее, поскольку они расположены на главной последовательности более высоко и время прохождения цикла составляет ~107 лет. По мере уменьшения количества водорода внутри звезды она сжимается. Это приводит к увеличению температуры и началу выгорания гелия. При превращении гелия в углерод выделяется большое количество энергии и поэтому светимость звезды возрастает.

С другой стороны, увеличение энергии приводит к увеличению радиационного давления на внешнем слое звезды, и внешние слои расширяются. В результате этого расширения газ охлаждается, излучаемый свет становится более красным и звезда резко смещается от главной последовательности (рис.). Этот процесс расширения и покраснения идет до тех пор, пока диаметр звезды не увеличится в 200-300 раз, и звезда становится красным гигантом. Примером красного гиганта является звезда Бетельгейзе из созвездия Ориона. Эволюция нашего Солнца к стадии красного гиганта приведет к тому, что оно сначала сожжет Землю из-за огромного количества выделившейся энергии, а затем в результате гигантского расширения поглотит ее останки. Однако заметим, что по расчетам астрономов до этого момента пройдет около 5 миллиардов лет. Время пребывания обычной звезды в виде красного гиганта составляет около 107 лет.

Достигнув на этой стадии максимальных размеров, звезда быстро смещается влево на диаграмме светимость - цвет. Этот переход от красного гиганта до пересечения с главной последовательностью составляет примерно 1% от всего времени существования звезды. Солнце, например, пройдет эту эволюцию за 100 миллионов лет. В этот период у большинства звезд нарушается равновесие и они начинают пульсировать, изменяя свою светимость. Это так называемые переменные звезды. Далее эволюция идет в зависимости от массы звезды. Если она меньше 1,4 солнечной массы («легкая» звезда), то при израсходовании ядерного горючего звезда смещается вниз на диаграмме светимость - цвет и в конце концов она охлаждается и угасает. Но при этом она проходит через стадию неустойчивости и происходят периодические извержения и возрастания светимости. Это и есть уже упомянутая стадия новой звезды, которая постепенно переходит в стадию белого карлика, еще более охлаждаясь - красного карлика, и наконец - черного карлика. Эволюция звезды, масса которой больше 1,4 солнечной массы, кончается эффектным гигантским взрывом и это - рождение сверхновой звезды.

Что происходит после взрыва сверхновой звезды? Астрофизики показали, что при возникающих в этом случае высоких давлении и температуре, образуются условия для образования нейтронов. В результате электроны как бы «вжимаются» в ядра, исчезает электростатическое отталкивание и под действием тяготения нейтронное вещество коллапсирует, образуя маленький сверхплотный шар. Он настолько плотен, что обычный распад нейтрона в нем оказывается запрещенным. Это и есть нейтронные звезды.

Билет 20. Концепции организации материи на уровне микромира. (ВООБЩЕ НИЧЕГО НЕ ПОНЯЛА, НО ВОТ, ЧТО ЕСТЬ.)

Осознавая структурность и системность материи в качестве важнейших ее атрибутов, человек, изучая окружающий мир с точки зрения своих человеческих потребностей, соизмеряет все эти многочисленные системы в первую очередь с собой. Исходя из этого в естествознании выделяют три основных уровня строения материи:

- микромир – мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная размерность которых исчисляется от 10~8 до 10~16 см, а время жизни – от бесконечности до 10~24 секунды;

- макромир – мир макрообъектов, соизмеримых с человеком и его опытом. Пространственные величины макрообъектов выражаются в миллиметрах, сантиметрах и километрах, а время – в секундах, минутах, часах и годах;

- мегамир – мир огромных космических масштабов и скоростей, расстояние в котором измеряется астрономическими единицами, световыми годами и парсеками, а время существования космических объектов – миллионами и миллиардами лет.

Изучение микромира началось с конца XIX века. Толчком послужило открытие Дж. Томсоном в 1897 г. первой элементарной частицы – электрона, а также выдвижение М. Планком в 1900 г. идеи кванта как мельчайшей неделимой порции энергии, в которой только и может происходить излучение и его поглощение. Ошеломлявшие ученых свойства элементарных частиц вскоре удалось объяснить в рамках первых квантовых теорий,– квантовой механики и квантовой электродинамики. Тем не менее в этой области еще существует великое множество загадочных и пока необъясненных фактов. Их изучение было задачей современной науки и, очевидно, останется целью постнеклассической науки.

Приставка «микро» означает отношение к очень малым размерам. Таким образом, можно сказать, что микромир – это что-то небольшое. В философии в качестве микромира изучается человек, а в физике, концепции современного естествознания в качестве микромира изучаются молекулы.

Микромир имеет свои особенности, которые можно выразить так:

1) единицы измерения расстояния (м, км и т. д.), используемые человеком, применять просто бессмысленно;

2) единицы измерения веса человека (г, кг, фунты и т. д.) применять также бессмысленно.

Так как была установлена бессмысленность применения единиц измерения расстояния и веса по отношению к объектам микромира, то, естественно, потребовалось изобрести новые единицы измерения. Так, расстояния между ближайшими звездами и планетами измеряются не в километрах, а в световых годах. Световой год – это такое расстояние, которое солнечный свет проходит за один земной год.

Изучение микромира вместе с изучением мегамира способствовало крушению теории Ньютона. Таким образом, была разрушена механистическая картина мира.

В 1927 г. Нильс Бор вносит еще один свой вклад в развитие науки: он сформулировал принцип дополнительности. Причиной, послужившей для формулировки данного принципа, стала двойственная природа света (так называемый корпускулярно-волновой дуализм света). Сам же Бор утверждал, что появление данного принципа было связано с изучением микромира из макромира. В качестве обоснования этого он приводил следующее:

1) предпринимались попытки объяснить явления микромира посредством понятий, которые были выработаны при изучении макромира;

2) в сознании человека возникали сложности, связанные с разделением бытия на субъект и объект;

3) при наблюдении и описании явлений микромира мы не можем абстрагироваться от явлений, относящихся к макромиру наблюдателя, и средств наблюдения.

Нильс Бор утверждал, что «принцип дополнительности» подходит как для исследования микромира, так и для исследования в других науках (в частности, в психологии).

В заключение данного вопроса стоит сказать, что микромир является основой нашего макромира. Также в науке можно выделить «микромикромир». Или, по-другому, наномир. Наномир, в отличие от микромира, является носителем света, точнее, всего спектра электромагнитных процессов, фундаментом, поддерживающим структуру элементарных частиц, фундаментальных взаимодействий и большинства явлений, известных современной науке.

Таким образом, предметы, окружающие нас, а также само тело человека не являются единым целым. Все это состоит из «частей», т. е. молекул. Молекулы, в свою очередь, также делятся на более мелкие составляющие части – атомы. Атомы тоже, в свою очередь, делятся на еще более мелкие составляющие части, которые именуются элементарными частицами.

Всю эту систему можно представить как дом или здание. Здание не является цельным куском, т. к. оно построено, допустим, с помощью кирпичной кладки, а кирпичная кладка состоит непосредственно из кирпича и раствора цемента. Если же начнет разрушаться кирпич, то, естественно, рухнет и все строение. Так и наша Вселенная – разрушение ее, если это произойдет вообще, также начнется с наномира и микромира.

Билет 21. Двойственность природы на уровне микромира.

Гипотеза Луи де Бройля утверждала, что частица и волна - это две стороны одной сущности. На микроуровне граница между волновыми и корпускулярными свойствами, между веществом и полем, размыта. Волновые и корпускулярные свойства не исключают, а дополняют друг друга. Свет одновременно обладает и свойствами волны, и свойствами частицы. Электроны и фотоны похожи на частицы и одновременно имеют волновые черты, что неизбежно приводит к выводу: они и не волны, и не частицы. Гипотеза де Бройля приводила к заключению:

- природа не полярна;

- не дуалистична;

- но двойственна.

Квантовая физика, по сути, отказалась от основных принципов классической механики, сформулированной некогда Галилеем, Декартом и Ньютоном. Пропасть между такими полярными в классической физике понятиями как:

- непрерывное - дискретное,

- определенное - неопределенное,

- однозначное - вероятностное,

- дуальное - двойственное,

- пространственное - временное,

- делимое - неделимое,

- процессуальное - случайное

существенно уменьшилась.

Таким образом, микромир плюралистичен:

- он демонстрирует не борьбу, а взаимодополнительность, комплиментарность противоположностей;

- микромир множественен, многомерен, что позволяет ему, исключая борьбу, делать свободный выбор.

- двойственность такого типа обнаруживается везде, где появляется постоянная Планка h. Квант действия h служит соединительным звеном между корпускулярным и волновым представлениями о материальных частицах, между дискретным и непрерывным представлениями о мире.

Реальные объекты, как микромира, так и макромира, обладают двойственной (двуединой) природой (как говорят в рекламах "два в одном"). Квантовая физика обнаружила комплиментарность мира, сочетания несочетаемых событий. Д. Данин в качестве синонима микромира использует метафору "кентавра", как образного представления всякого "сочетания не сочетаемого": всадник не стегает коня, а конь не норовит сбросить всадника". Такие сочетания не предполагают борьбы сторон с обязательной или желанной победой одной из разнородных ипостасей над другой. Борьба с победой или поражением одного из разнородных начал лишает смысла целое.

Таким образом, квантовая физика сказала нет дуалистическому мировоззрению, возникшему в средневековье и закрепленному на долгие времена классической физикой.

Иллюстрацией к одной из причин дуализма (полярности сущностей) служит ситуация перехода из пространства с большим числом измерений в пространство с меньшим числом измерений. Проекция многомерной системы в пространство с меньшим числом измерений всегда приводит к неустранимым ошибкам, неопределенностям. Два сечения фигуры - единое целое с фигурой в трех измерениях, становятся несвязанными элементами, хотя и принадлежат единому целому, в двух измерениях. При проекции в мир с меньшим числом измерений, то, что было единым, кажется независимым. Не учет дополнительных измерений приводит к дуализму: сущности кажутся независимыми,полярными. Причина дуальности - не объективные свойства мира, а некорректность интерпретации его свойств.

"Частица-волна" классически невозможное сочетание. О такой “взаимо- исключающей двойственности” принято говорить как о "корпускулярно- -волновом дуализме". Квантовая физика обнаружила, что частица и волна - это предельные, идеализированные случаи существования объектов природы. Почему же не проявляются волновые свойства многочисленных предметов, окружающих нас? Длина волны де Бройля для препятствий много больше длины волны света мала (длина волны видимой области спектра 0.5 мкм). На макроуровне корпускулярные и волновые свойства разграничены, полярны: в опытах по интерференции свет ведет себя как волна, а при взаимодействии с веществом - как частица.

Интересно, что основой двух полярных моделей эволюции - линейной и циклической, является дуальность мира. Дуализм - это всегда представление о противоборстве двух начал. Дуализм все делит на полярные сущности и утверждает, что полярность, т. е. наличие противоположностей - это основа мира, двигатель его эволюции. Полярные, противоположные сущности разделены четкой границей в дуалистическом мире.

Дуализм и линейная модель

В линейной модели развития мира двойственность недопустима, поэтому противоположные сущности антагонистичны. Вывод о борьбе противоположностей неизбежен. Борьба должна заканчиваться победой одной (лучшей) из сторон. Классическая история до середины 20 века основывалась на линейной, дуалистической концепции.

Дуализм и циклическая модель

Не исключает борьбы противоположностей и циклический подход, который рассматривает жизнь как вечный круговорот, непрерывную смену противополож-ностей. Работы по динамике культуры пронизаны духом дуализма. Принцип дуальности мира объявляется универсальным. Человек обречен природой на пребывание в состоянии дуальности. Культура всегда дуальна, извечно колеблется между двух полюсов: между модерном и постмодерном. Возвращаются мысли, чувства, идеи, этические, эстетические представления, характер политических структур, эпох, стилей.Можно найти множество примеров дуальности мира:

- "женское-мужское";

-"теплое и холодное";

-"живое и косное";

- "упордоченное-хаотичное";

- "постоянное-изменчивое";

- "материальное и духовное"

- "симметричное-асиммтричное";

- "правое-левое";

- "свободное-ограниченное";

- "доброе и злое";

И даже двойная спираль ДНК выбирается в защиту двойственности мира. Возьмем в качестве примера полушария мозга: "левое и правое" полушария. Полушария ориентируются на разные шкалы ценностей, пользуются разными логиками. Правое полушарие отвечает за образное мышление, интуитивное, эмоциональное и обращено в прошлое. Функции правого - врожденные. Левое полушарие отвечает за абстрактное, интеллектуальное мышление. Функции левого полушария обращены в будущее. Однако мозг функционирует как единое целое, интегрируя оба типа мышления, создавая однозначный контекст. Данный пример говорит скорее не о дуализме полушарий, не об их конфронтации, а о согласованном функционировании, о соединении несоединимого. Взаимодествие между полушариями создает полноценную систему отображения внешнего мира и позволяет вырабатывать стратегию и тактику целесообразного поведения человека на основе комплексной переработки языковой и образной информации. Создание человеком изображений, музыки, литературы, науки возможно только при условии тесного взаимодействия правого и левого полушарий.

Примеров дуальных понятий можно привести множество. Но можно найти множество примеров и трехмерности мира:

- три качества времени (прошлое, настоящее, будущее)

- три грамматические качества мира ( я, ты, он)

- троичность Бога

триединство пронизывает природу:

- трехмерны векторные физические величины (сила, ускорение, импульс, момент импульса)

- трехмерно макропространство Вселенной

Человеческий ум обладает уникальной способностью отображать внешний мир, т.е. сжимать сложные сигналы, поступающие из внешнего мира. Процесс мышления не линеен и не дуален. Наша привычка все изображать в виде дуальных оппозиций лишь начальный этап иерархии культуры. Начальный этап - это всегда моделирование явление, его упрощенное представление, которое, безусловно, эволюционирует в сторону многомерного восприятия действительности.

Картина микромира потрясла своей необычностью научный мир. Творцы квантовой теории, спасая привычные каноны макромира, вопреки себе, создали неопровержимую новую теорию. Человечество пришло к выводу, что мир атомов, мир с размерами порядка 10-8 см; мир не доступный нашим ощущениям, живет по чуждым нам законам. Но квантовые эффекты уже стали привычны и на макроуровне (сверхтекучесть, когерентное излучение, сверхпроводимость и т.д.), и на мегауровне (белые карлики, нейтронные звезды). А синергетика убеждается в том, что особенности микромира свойственны макросистемам разной природы.

Мир многосвязен и комплиментарен. Мир не дуалистичен, не полярен, он плюралистичен. Не борьба противоположностей, а набор альтернатив и возможность выбора. В этом заключается глубокое и революционное значение идей квантовой физики. Микромир выступает как совокупность отношений. А Вселенная - это подвижная, динамическая ткань, состоящая из всплесков энергии. Ни одна из частей этой ткани не существует отдельно от целого.

Билет 22. Понятие квантовой механики. Принципы квантовой механики.

Квантовая механика – фундаментальная физическая теория, устанавливающая способ описания и законы движения микрочастиц (молекул, атомов, атомных ядер, частиц) во внешних полях.

Квантовая механика в основном была создана в течение первых трёх десятилетий 20-го века благодаря работам М. Планка, А. Эйнштейна, Н. Бора, А. Комптона, Л. де Бройля, В. Паули, М. Борна, В. Гейзенберга, Э. Шрёдингера и П. Дирака.

Физической основой квантовой механики является корпускулярно-волновой дуализм, согласно которому любому материальному объекту – частице или волне – присущи как волновые, так и корпускулярные свойства. Корпускулярно-волновой дуализм наиболее ярко проявляется у микрообъектов. Его следствием является необходимость отказа от некоторых классических представлений, возникших в результате наблюдений за движением макроскопических тел. В частности волновые свойства частиц несовместимы с представлением об их движении по определённым классическим траекториям.

ПРИНЦИПЫ НИКАК ПОНЯТЬ НЕ МОГУ. (ГДЕ ОНИ??)

Соотношение неопределенности Гейзенберга. Логическим развитием идеи о корпускулярных свойствах света ("волны могут вести себя подобно частицам") явилось признание волновых свойств у частиц (электрон, нейтрон, протон и т.д. мало отличаются от фотонов и подобно им могут проявлять волновые свойства).Например, в случае очень близкого расположения небольших щелей в опыте Юнга с источником электронов вместо светового так же возникает интерференционная картина. Рентгеновские лучи (фотоны с очень большой энергией) при дифракции на трехмерной кристаллической структуре дают картинку, сходную с получающейся при дифракции электронов.

Рассуждения, аналогичные ранее проделанным для интерферирующих фотонов, требуют признания невозможности постановки эксперимента по выяснению через какое из двух отверстий пролетел электрон при условии сохранения интерференционной картины. В отличие от фотона, электрон (или другая элементарная частица) в принципе могут быть зарегистрированы без их обязательного поглощения (например, по рассеянному на них свету). Однако, любое взаимодействие обладающих малыми частиц с другими телами (даже со светом) неизбежно приводит к существенным изменениям состояний самих наблюдаемых частиц, что ведет к разрушению интерференционной картины (фотоны при рассеянии передают частицам импульс порядка , попытка уменьшения которого за счет уменьшения частоты освещающего излучения неизбежно приводят к потере информации о положении частицы из-за явления дифракции). Многочисленные мысленные эксперименты, подобные рассмотренному приводят к выводу о невозможности одновременного измерения координаты и импульса частиц со сколь угодно высокой наперед заданной точностью. Выражающее принципиальные ограничения на точность измерений неравенство, связывающее минимально возможные погрешности было предложено Гейзенбергом и носит название соотношения неопределенности:.

Соотношение неопределенности Гейзенберга явилось предметом пристального внимания философии, поскольку провозглашаемый принципиальный запрет перекликался с идеями сторонников агностических учений, отрицающих возможность познания окружающего нас мира. Несмотря на то, что подавляющее большинство естествоиспытателей уверено в познаваемости мира, требовался серьезный философский анализ возникшей проблемы. По-видимому, выход состоит в признании неприменимости методов описания макроскопических объектов к объектам микромира: если объект не обладает какими-либо характеристиками, то невозможности их точного экспериментального определения вовсе не означает невозможности изучения объекта (бессмысленность попыток получить экспериментально ответ на вопрос о длине хвоста черта не означает невозможности познания мира в целом). Т.о. соотношение неопределенности является "подсказкой" природы о том, что привычный язык классической кинематики и динамики Ньютона малопригоден для описания процессов с участием объектов микромира.

Особенности квантово-механического описания. "Правила игры" квантовомеханического описания нерелятивистских макро- и микроскопических объектов не могут быть выведены, исходя из "привычных" классических законов, поскольку являются более общими и включают в себя эти классические законы, как частный случай, получаемый в виде чисто математических следствий из постулируемых принципов квантовой механики (принцип соответствия должен выполняться).

Критерием истинности формулируемых принципов, как обычно, является эксперимент и, может быть, красота и изящность теории ("эта теория достаточно безумна, что бы быть верной"). Следует ожидать, что после завершения разработки еще более общей теории (релятивистской квантовой механики), принципы нерелятивистской теории превратятся в прямые следствия новых, более фундаментальных принципов.

Наиболее принципиальными отличиями квантовомеханического описания явлений от принятого в классическом естествознании подхода являются:

1. Отказ от детерминированности и признание принципиальной роли случайности в процессах с участием микрообъектов. В классическом описании понятие случайности используется для описания поведения элементов статистических ансамблей и является лишь сознательной жертвой полнотой описания во имя упрощения решения задачи. В микромире же точный прогноз поведения объектов, дающий значения его традиционных для классического описания параметров, по-видимому, вообще невозможен. По этому поводу до сих пор ведутся оживленные дискуссии: приверженцы классического детерминизма, не отрицая возможности использования уравнений квантовой механики для практических расчетов, видят в учитываемой ими случайности результат нашего неполного понимания законов ("внутренних механизмов"), управляющих пока непредсказуемым для нас поведением микро объектов. Приверженцем такого подхода, допускающего наличие у квантовых объектов "внутренних степеней свободы", бал А. Эйнштейн, сформулировавших свою позицию в знаменитом высказывании: "Я не могу предположить, что бы господь Бог играл в кости". До настоящего времени не обнаружено никаких экспериментальных фактов, указывающих на существование внутренних механизмов, управляющих "случайным" поведением микрообъектов.

2. Принципиально отличающийся от классического закон сложения вероятностей взаимоисключающих друг друга (с классической точки зрения) событий (например, прохождение электрона через одну из щелей экрана в опыте Юнга). В классической концепции вероятности всегда складываются: что и приводит к не оправдывающемуся на опыте ожиданию обнаружить при открывании двух щелей картины, равную сумме изображений, получаемых от каждой из щелей в отдельности. В кавнтовой механике закон (1) справедлив только в случае, когда существует хотя бы принципиальная возможность установить какое из возможных событий произошло на самом деле (при освещении щелей Юнга коротковолновым излучением можно узнать, по какому пути прошел электрон, закон сложения (1) выполняется и интерференционной картины не возникает). Если же ситуация такова, что события принципиально неразличимы, суммарная вероятность вычисляется как квадрат модуля суммы комплексных функций, называемых амплитудами вероятностей:при этом вероятности не суммируются, что, например, и наблюдается в экспериментах по интерференции электронов (рис. 20_1). При движении в пустом пространстве амплитуда перехода частицы из одной точки в другую совпадает с выражением для плоской монохроматической волны, частота которой связана с энергией формулой Планка . (Сравните формулу (3) с выражением, описывающим интерференцию света (19_8): далеко идущие выводы напрашиваются сами собой! Однако, именно здесь уместна большая осторожность: современная квантовая механика является нерелятивистской теорией и из ее законов непосредственно не может быть получено исчерпывающее описание ультрарелятивистской частицы - фотона.)

3. В квантовой механике отвергается постулируемая в классическом естествознании принципиальная возможность выполнения измерений и даже наблюдений объектов и происходящих с ними процессов, не влияющих на эволюцию изучаемой системы. Это приводит к существованию пар канонически-сопряженных классических параметров, одновременное сколь угодно точное измерение которых оказывается невозможным (к ним относятся уже упоминавшиеся координата - импульс, время - энергия, и др.).

Законы классической физики получаются из квантовомеханических в пределе больших масс составляющих систему тел. При этом, например, даваемые соотношением неопределенности (1) ограничения на точность оказываются малосущественными:Выходящий из имеющей две открытые двери комнаты человек, в принципе, "будет интерферировать" подобно электрону в опыте Юнга, из-за чего возникнут области в пространстве, где он не сможет появиться. однако из-за большой массы человека размеры этих областей будут столь малы (реально много меньше размеров микрочастицы), что для реальных задач макроскопического описания указанное явление заведомо несущественно и даже не наблюдаемо. При рассмотрении же движения электрона (масса всего кг) в атоме (характерные размеры около м) соотношение неопределенности предсказывает наличие заведомо ненулевого импульса. Соответствующая ему кинетическая энергия оказывается близкой по порядку величины к потенциальной энергии электростатического притяжения электрона к ядру. При этом соотношение неопределенности "не дает" электрону существенно приблизиться к ядру, поскольку при этом скорость его движения неизбежно должна увеличиться. Т.о электрон в атоме является принципиально квантово-механическим объектом. При квантово-механическом рассмотрении атома даже в рамках полу классической модели Резерфорда проблема ультрафиолетовой катастрофы снимается.

23 билет.Учение В.И. Вернадского о биосфере представляет собой обобщение естественнонаучных знаний, оно вобрало в себя эволюционные взгляды Ч. Дарвина, периодический закон Д.И. Менделеева, теорию единства пространства и времени А. Энштейна, идеи о неразрывной связи живой и неживой природы многих отечественных и зарубежных ученых.

В работах В.И. Вернадского рассматриваются компоненты биосферы, ее границы, функции живого вещества, эволюция биосферы.

Ученый впервые показал, что живая и неживая природа Земли тесно взаимодействуют и составляют единую систему. Биосфера представляет собой сложнейшую планетарную оболочку жизни, населенную организмами, составляющими в совокупности живое вещество. Это самая крупная экосистема Земли.

В 1926 годуВернандсикй опубликовал в Ленинграде книгу под названием «Биосфера», которая ознаменовала рождение новой науки о природе, о взаимосвязи с ней человека. В этой работе биосфера впервые показана как единая динамическая система, населенная и управляемая жизнью, живым веществом планеты.

Биосфера является результатом сложнейшего механизма геологического и биологического развития косного и биогенного вещества . С одной стороны , это среда жизни , а с другой – результат жизнедеятельности . Главная специфика современной биосферы – это четко направленные потоки энергии и биогенный круговорот веществ.Разрабатывая учение о биосфере , В.И. Вернадский пришел к выводу , что главным трансформатором космической энергии является зеленое вещество растений . Только они способны поглощать энергию солнечного излучения и синтезировать первичные органические соединения .

В состав биосферы входит живое и костное вещество.Живым вещество - совокупность живых организмов, населяющих нашу планету. Это главная сила, преобразующая поверхность планеты, основа формирования и существования самой биосферы. Во все геологические эпохи живое вещество, преобразуя и аккумулируя солнечную энергию, влияло на химический состав земной коры, было мощной геохимической силой, формирующей лик Земли. Под косным веществом В.И. Вернадский понимал такие вещества биосферы, в создании которых живые организмы не участвуют. Это, например, газы, твердые частицы и водяные пары, выбрасываемые вулканами, гейзерами.

Одна из основных заслуг В.И. Вернадского состоит в том, что он впервые обратил внимание на то, что живое вещество выполняет в биосфере различные биогеохимические функции. Важнейшими функциями являются энергетическая, газовая, окислительно-восстановительная, концентрационная.

Энергетическая функция заключается в накоплении и преобразовании растениями энергии Солнца и передаче ее по пищевым цепям: от продуцентов - к консументам и, далее, - к редуцентам.

В осуществлении газовой функции ведущая роль принадлежит зеленым растениям, которые в процессе фотосинтеза поглощают углекислый газ и выделяют в атмосферу кислород.

Окислительно-восстановительная функция тесно связана с энергетической. Существуют микроорганизмы, которые в процессе жизнедеятельности окисляют или восстанавливают различные соединения, получая при этом энергию для жизненных процессов. Велико их значение для образования многих полезных ископаемых.

Концентрационная функция заключается в способности живых организмов накапливать различные химические элементы.

24 билет. История возникновения и эволюции биосферы - это, по сути, история развития органического мира на Земле. С возникновением живых существ началось изменение ими окружающей среды. Появление зеленых растений привело к уменьшению количества углекислого газа в атмосфере и обогащению ее кислородом. Это было началом формирования биосферы. Развитие биосферы шло вместе с эволюцией органического мира - расширялись ее границы, ускорялась биогенная миграция атомов, изменялся состав ее компонентов.

Эволюция живого вещества выражается в изменении и усложнении организации живых форм, уменьшении их прямой зависимости от среды обитания, в усовершенствовании способов ориентации и передвижения в пространстве и т.д.

В.И. Вернадский, основываясь на идеях физики о неразделимости пространства и времени в природных явлениях, объяснил прогрессивную направленность биологической эволюции и определил основные черты земного пространства - времени. Это ограниченность пространства (тело планеты) и безграничность времени. При такой объективной заданности условий эволюция живого вещества определяется пространством как минимальной ограничительной величиной и неизбежно направлена в сторону прогрессивного развития, т.е. приобретения свойств, позволяющих максимально использовать это ограниченное земное пространство. Поэтому, например, эволюция зеленых растений выразилась не только в переходе от споровых к цветковым, но и в том, что гладкоствольные формы растений заменялись ширококронными - увеличивалась площадь улавливания солнечных лучей. Площадь крон всех зеленых растений нашей планеты сравнима с площадью Юпитера - самой крупной планеты Солнечной системы. Животные осваивали пространство путем приспособления к передвижению в различных физических средах и путем совершенствования органов чувств, нервной системы, функций высшей нервной деятельности. Это выразилось в эволюции нервной системы животных от простейших ощущении к сложным инстинктам и мышлению. Умственное развитие современного человека достигло высокого уровня, что может привести к новой форме "растекания" жизни, преодолению ограниченности земного пространства.

Особое внимание в своих трудах ученый уделял возрастающему влиянию человека на ход эволюции биосферы. Вернадский подчеркивал, что человек разумный - невиданная по своим масштабам геохимическая сила, которая увеличивает свое влияние по мере развития научной мысли. Еще в 20-х годах прошлого века ученый сумел предугадать многие тенденции воздействия человека на природу. Его теоретические положения о биосфере и месте в ней человека - блестящий пример научного обобщения.

25 билет.физические взаимодействия в природе.

В своей повседневной жизни человек сталкивается с множеством сил, действующих на тела: сила ветра или потока воды; давление воздуха; мощный выброс взрывающихся химических веществ; мускульная сила человека; вес предметов; давление квантов света; притяжение и отталкивание электрических зарядов; сейсмические волны, вызывающие подчас катастрофические разрушения; вулканические извержения, приводившие к гибели цивилизаций и т.д. Одни силы действуют непосредственно при контакте с телом, другие, например гравитация, действуют на расстоянии, через пространство. Но, как выяснилось в результате развития естествознания, несмотря на столь большое разнообразие, все действующие в природе силы можно свести к четырем фундаментальным взаимодействиям. Именно эти взаимодействия в конечном счете отвечают за все изменения в мире, именно они являются источником всех материальных преобразований тел, процессов. Каждое из четырех фундаментальных взаимодействий имеет сходство с тремя остальными и в то же время свои отличия. Изучение свойств фундаментальных взаимодействий составляет главную задачу современной физики.

Гравитация

Гравитация первым из четырех фундаментальных взаимодействий стала предметом научного исследования. Созданная в XVII веке ньютоновская теория гравитации (закон всемирного тяготения) позволила впервые осознать истинную роль гравитации как силы природы.Гравита́ция (притяжение, всеми́рноетяготе́ние, тяготе́ние)— универсальное фундаментальное взаимодействие между всеми материальными телами. В приближении малых скоростей и слабого гравитационного взаимодействия описывается теорией тяготения Ньютона, в общем случае описывается общей теорией относительности Эйнштейна. Гравитация является самым слабым из четырёх типов фундаментальных взаимодействий. В квантовом пределе гравитационное взаимодействие должно описываться квантовой теорией гравитации, которая ещё полностью не разработана.

Электромагнитное взаимодействие

Электромагни́тноевзаимоде́йствие — одно из четырёх фундаментальных взаимодействий. Электромагнитное взаимодействие существует между частицами, обладающими электрическим зарядом. С современной точки зрения электромагнитное взаимодействие между заряженными частицами осуществляется не прямо, а только посредством электромагнитного поля.

С точки зрения квантовой теории поля электромагнитное взаимодействие переносится безмассовым бозоном — фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля). Сам фотон электрическим зарядом не обладает, а значит не может непосредственно взаимодействовать с другими фотонами.

Слабое взаимодействие

Слабое взаимодействие, или слабое ядерное взаимодействие — одно из четырёх фундаментальных взаимодействий в природе. Оно ответственно, в частности, за бета-распад ядра. Это взаимодействие называется слабым, поскольку два других взаимодействия, значимые для ядерной физики (сильное и электромагнитное), характеризуются значительно большей интенсивностью. Однако оно значительно сильнее четвёртого из фундаментальных взаимодействий, гравитационного. Слабое взаимодействие является короткодействующим — оно проявляется на расстояниях, значительно меньших размера атомного ядра (характерный радиус взаимодействия 10−18 м). Теория слабого взаимодействия была создана в конце 60-х гг. С момента построения Максвеллом теории электромагнитного поля создание этой теории явилось самым крупным шагом на пути к единству физики.

Сильное взаимодействие

Последнее в ряду фундаментальных взаимодействий — сильное взаимодействие, которое является источником огромной энергии. Наиболее характерный пример энергии, высвобождаемой сильным взаимодействием, — Солнце. В недрах Солнца и звезд непрерывно протекают термоядерные реакции, вызываемые сильным взаимодействием. Но и человек научился высвобождать сильное взаимодействие: создана водородная бомба, сконструированы и совершенствуются технологии управляемой термоядерной реакции.

Си́льное ядерное взаимоде́йствие (цветово́евзаимоде́йствие, я́дерноевзаимоде́йствие) — одно из четырёх фундаментальных взаимодействий в физике. В сильном взаимодействии участвуют кварки и глюоны и составленные из них частицы, называемые адронами (барионы и мезоны). Оно действует в масштабах порядка размера атомного ядра и менее, отвечая за связь между кварками в адронах и за притяжение между нуклонами (разновидность барионов — протоны и нейтроны) в ядрах.