Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
БТ 5 семестр / ХНГ_заочн_2011 / ХНГ_пособие_I.doc
Скачиваний:
1321
Добавлен:
30.05.2015
Размер:
2.67 Mб
Скачать

1.5. Образование основных классов углеводородов нефти[3]

В нефти присутствуют углеводороды, образующиеся на различных этапах геохимической истории органического вещества. Первым источником углеводородов является ихбиосинтез в живом веществеорганизмов.Вторым источником нефтяных углеводородов является процессмикробиальной переработкиисходного органического вещества, протекающий на стадии диагенеза осадков. Биомолекулы отмершего вещества организмов обладают различной устойчивостью к биохимическому воздействию и превращаются в осадке в более устойчивые в данных условиях соединения, в том числе и в углеводороды. В углеводороды могут превращаться спирты и альдегиды; возможно превращение циклических терпеноидов в цикланы и арены.Третьими основным источником углеводородов является их образование преимущественно излипидныхкомпонентов органического вещества при еготермической(или термокаталитической) деструкции при90—160°Сво время проявленияглавной фазы нефтеобразования.

На состав углеводородов нефти влияет ряд факторов:

  • особенности исходного органического вещества осадков;

  • геохимические условия (Eh, pH) при преобразовании органического вещества в осадках;

  • степень катагенетического (термического) превращения исходного для нефти органического вещества в зоне повышенных температур;

  • вторичные изменения нефти в процессе образования залежей и при их существовании в течение длительного геологического времени (физическая дифференциация углеводородов в процессе миграции, длительное воздействие повышенной температуры, окислительные процессы в залежах и т. п.).

Состав углеводородов конкретной нефти формируется под воздействием многих причин, и не всегда легко выделить из них основную.

Алканы.Для высокомолекулярных н-алканов нефти возможнытри основных источника образования: н-алканы, синтезируемые в живых организмах; высокомолекулярные алифатические одноатомные спирты, входящие в состав восков живого вещества, и высшие одноосновные предельные жирные кислоты.

В живом веществе широко распространены н-алканы СН3(СН2)nСН3с нечетным числом атомов углерода. Часть высокомолекулярных н-алканов непосредственнонаследуетсянефтью от исходного органического вещества осадков. В зависимости от исходного органического вещества они имеют некоторую специфику. В хемосинтезирующих бактериях обнаружены н-алканыC12–C31примерно с одинаковым числом четных и нечетных атомов углерода; в фотосинтезирующих бактериях – н-алканы С14–С29. В сине-зеленых водорослях присутствуют н-алканыC15–С20, причем, более 80 % в них приходится на углеводороды С17 и более высокомолекулярные. коэффициент нечетности — в пределах 1–5. Для высших растений характерны н-алканы более высокомолекулярные: С23–C35с преобладаниемC25, С27и С29при массовом отношении нечетных углеводородов к четным более 10. Эти особенности углеводородов проявляются нередко и в нефтях, связанных с образованием из морского планктоногенного органического вещества или из керогена, в котором большую роль играли остатки высшей наземной растительности. Некоторое количество н-алканов образуется прибиохимическом превращении жирных кислот, спиртов и альдегидов на стадии диагенеза осадков. Однако значительно большее их количество образуется при повышенной температуре (100–150°С) во время проявленияглавной фазы нефтеобразования, в основном, вследствиедекарбоксилированиявысших одноосновных предельныхжирных кислотпо схеме:

R—СООН →CO2+ .RH

С18Н36О2→ СО2+ С17Н36

Образующийся углеводород содержит на один атом углерода меньше, чем исходная кислота. А поскольку в живом веществе распространены в основном "четные" жирные кислоты (например, олеиновая С18Н34О2, стеариноваяC18H36О2), то в образующихся н-алканах преобладают "нечетные" углеводороды, в данном случае – С17Н36.

Другой важный механизм образования н-алканов связан с превращением высших жирных кислот в алифатические кетоны с удвоением углеродной цепи и последующим их восстановлением в углеводороды. А.И. Богомолов подтвердил экспериментально возможность такого пути реакций:

С17Н35—СО— С17Н35 + 4[Н] → С17Н35—СН2— С17Н35+ Н2О

в присутствии глины как катализатора, без внешнего источника водорода, только в результате реакций перераспределения водорода, находящегося в системе реагирующих веществ. Выход н-алканов при 200°С составлял около 30 %, а н-гентриаконтана – 27 %.

Источниками образования н-алканов могут быть также спирты, ненасыщенные жирные кислоты и, возможно, аминокислоты.

Одним из источников разветвленныхалканов являются биосинтетические углеводороды, среди которых в живом веществе широко распространены 2-метилалканы и 3-метилалканы с преобладанием нечетного числа атомов углерода. Значительное количестворазветвленныхалканов образуется во время проявленияглавной фазы нефтеобразованияпри интенсивной термической деструкции липидов. В этих реакциях образуются как насыщенные, так и ненасыщенные углеводороды. Образующиеся алканы, по мнению А. И. Богомолова, претерпевают при каталитическом воздействии ряд превращений, дающих начало разветвленным алканам. Они могут образовываться также вследствие отрыва алкильных радикалов от углеводородов стероидного строения.

Специфической группой разветвленных алканов являются свойственные нефтям углеводороды С10–С40 с регулярным чередованием метильных групп – так называемыеизопреноидные алканы(изопренаны). Их источником в некоторой степени являются непосредственнобиосинтетические изопреноидныеуглеводороды, содержащиеся в эфирных маслах живого вещества, но главным образом – имеющиеизопреноидную структуру их кислородные производные: спирты, альдегиды, кетоны, сложные эфиры, карбоновые кислоты, входящие в молекулярную структуру органического вещества пород.

Изопреноидные структуры живого вещества:

К изопреноидным алканам относятся такие характерные для нефти изоалканы, как фитан20Н42) ипристан(C19H40), которые образуются из входящего в состав хлорофилла всех зеленых растений непредельного спиртафитола20Н39ОН).

Изоалкан пристан встречается и непосредственнов телах многих морских животных.

Предполагается, что первая стадия образования изоалканов – дегидратация фитола с образованием фитадиена. Затем при диспропорционировании водорода и насыщении диена происходит образование фитана. Одновременно протекают и другие реакции, связанные с деструкцией углеродной цепи и образованием изопреноидных углеводородов с меньшим числом атомов углерода.

Циклоалканы.Циклоалканы (нафтены) – очень характерный для природных нефтей класс углеводородов, который был впервые открыт в нефти В. В. Марковниковым. Их содержание в нефти составляет от 25 до 75 %.

Источником циклоалканов в нефти в незначительной степени могут быть некоторыебиосинтетические углеводороды живого вещества, такие, как моноциклические лимонен, α-пинен, камфен, полициклические углеводороды типа β-каротина:

Однако более важным источникомциклоалканов в нефти являются широко распространенные в живом веществе организмовкислородсодержащие производные различных циклических терпенов(монотерпенов (Cl0H16), сесквитерпенов (C15H24), дитерпенов (С20Н32), тритерпенов (С30Н48) и тетратерпенов (С40Н64)) с функциями спиртов, кетонов и кислот.

Образование циклоалканов из них происходило в результате потери функциональных кислородных групп и реакций диспропорционирования водорода при почти полном сохранении основы молекулярной структуры исходных терпеноидов живого вещества. Образующиеся в результате этих процессов различные циклоалканы, например, стераны и гопаны, уже упоминались при рассмотрении "биомаркеров", свидетельствующих об органическом происхождении нефти.

Из циклического спирта холестерина образуется, например, углеводород холестан:

По такой же схеме образовывались и другие цикланы – стерины и тритерпены (С27–С35) из стероидов, присутствующих в живом веществе в свободном виде или в виде эфиров жирныхкислот.

Другой, более значительный по масштабам источникобразования циклоалканов связан с дегидратационнойциклизацией непредельных жирных кислот с образованием насыщенных циклических углеводородов.

Из образующихся циклоалкенов при дальнейших превращениях получаются нафтеновые и нафтеново-ароматические углеводороды.

Возможность такого механизма образования циклоалканов изучена А. И. Богомоловым экспериментально при нагревании олеиновой кислоты до 200°С с алюмосиликатным катализатором. При этом были получены углеводороды от С5до С40различных классов – алифатические, алициклические и ароматические. Среди образовавшихся циклоалканов преобладали изомеры с пяти- и шестичленными кольцами и мостикового типа, как в природных нефтях. Были обнаружены также би- и трициклические циклоалканы.

Арены.Для живого вещества организмов ароматические структуры нехарактерны, в то время как в нефтях содержание ароматических углеводородов составляет 10–35 %.

В живом веществе ароматические структуры содержатся в лигнине, некоторых аминокислотах, а также гидрохинонах (витамины Е, К) в виде отдельныхароматических колец. Их доля в исходном для нефти веществе организмов очень мала, поэтому образование аренов в сапропелевом органическом веществе осадков и в нефтях следует связывать, главным образом, со вторичными процессами преобразования органического вещества, происходящими в осадках на стадияхдиагенезаи, особенно,катагенезав зоне повышенных температур.

Частично арены образуются сразу же после отмирания организмов в свежих илах вследствие преобразования полиеновых соединений типа каротиноидов, из стероидных соединений, бензохинонов, а также гидрохинонов и нафтохинонов, в структуре которых имеются ароматические ядра:

При превращении непредельных жирных кислот в присутствии глины как катализатора образуются сначала предельные пятичленные и шестичленные кетоны и неконденсированные нафтены. Дальнейшее превращение предельных циклических кетонов идет по реакции дегидрационной конденсации, для циклогексанона, например, следующим образом:

При этом образуется додекагидротрифенилен – гибридныйуглеводород нафтеново-ароматической структуры.

Рассмотренные материалы свидетельствуют о том, что образование всех основных классов углеводородов природных нефтей частично обусловлено:

  1. процессом биосинтезауглеводородов вживомвеществе;

  2. биохимическим процессомпреобразования ОВна стадиидиагенеза;

но главным образом

  1. термическим или термокаталитическимпревращением липидного материала биогенного сапропелевогоорганического веществаосадочных пород в зонекатагенезапри проявленииглавной фазы нефтеобразования.

Соседние файлы в папке ХНГ_заочн_2011